skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 23, 2026

Title: Formation of a Mn III –O–Ce IV species from a Mn III -hydroxo complex and ceric ammonium nitrate
The reaction of a MnIII-hydroxo complex with ceric ammonium nitrate generates a product with a MnIII–O–CeIVcore that has enhanced reactivity in one-electron oxidation reactions and new reactivity in two-electron oxidation reactions.  more » « less
Award ID(s):
2154955
PAR ID:
10651152
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
54
Issue:
37
ISSN:
1477-9226
Page Range / eLocation ID:
14001 to 14012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Manganese catalysts that activate hydrogen peroxide have seen increased use in organic transformations, such as olefin epoxidation and alkane C−H bond oxidation. Proposed mechanisms for these catalysts involve the formation and activation of MnIII‐hydroperoxo intermediates. Examples of well‐defined MnIII‐hydroperoxo complexes are rare, and the properties of these species are often inferred from MnIII‐alkylperoxo analogues. In this study, we show that the reaction of the MnIII‐hydroxo complex [MnIII(OH)(6Medpaq)]+(1) with hydrogen peroxide and acid results in the formation of a dark‐green MnIII‐hydroperoxo species [MnIII(OOH)(6Medpaq)]+(2). The formulation of2is based on electronic absorption,1H NMR, IR, and ESI‐MS data. The thermal decay of2follows a first order process, and variable‐temperature kinetic studies of the decay of2yielded activation parameters that could be compared with those of a MnIII‐alkylperoxo analogue. Complex2reacts with the hydrogen‐atom donor TEMPOH two‐fold faster than the MnIII‐hydroxo complex1. Complex2also oxidizes PPh3, and this MnIII‐hydroperoxo species is 600‐fold more reactive with this substrate than its MnIII‐alkylperoxo analogue [MnIII(OOtBu)(6Medpaq)]+. DFT and time‐dependent (TD) DFT computations are used to compare the electronic structure of2with similar MnIII‐hydroperoxo and MnIII‐alkylperoxo complexes. 
    more » « less
  2. The reaction of a mononuclear MnIII–hydroxo complex with hydrogen peroxide under different reaction conditions yields bis(μ-oxo)dimanganese(iii,iv), MnIII–hydroperoxo, and MnIII–peroxo intermediates. 
    more » « less
  3. Synthetic manganese catalysts that activate hydrogen peroxide perform a variety of hydrocarbon oxidation reactions. The most commonly proposed mechanism for these catalysts involves the generation of a manganese(iii)-hydroperoxo intermediate that decays via heterolytic O–O bond cleavage to generate a Mn( v)-oxo species that initiates substrate oxidation. Due to the paucity of well-defined Mn(III)-hydroperoxo complexes, Mn(III)-alkylperoxo complexes are often employed to understand the factors that affect the O–O cleavage reaction. Herein, we examine the decay pathways of the Mn(III)-alkylperoxo complexes [Mn(III)(OOtBu)(6Me dpaq)]+ and [Mn(III)(OOtBu)(N4S)]+, which have distinct coordination environments (N5− and N4S− , respectively). Through the use of density functional theory (DFT) calculations and comparisons with published experimental data, we are able to rationalize the differences in the decay pathways of these complexes. For the [Mn(III)(OOtBu)(N4S)]+ system, O–O homolysis proceeds via a two-state mechanism that involves a crossing from the quintet reactant to a triplet state. A high energy singlet state discourages O–O heterolysis for this complex. In contrast, while quintet–triplet crossing is unfavorable for [Mn(III)(OOtBu)(6Medpaq)]+, a relatively low-energy single state accounts for the observation of both O–O homolysis and heterolysis products for this complex. The origins of these differences in decay pathways are linked to variations in the electronic structures of the Mn(III)-alkylperoxo complexes. 
    more » « less
  4. Abstract A mononuclear nonheme cobalt(III) iodosylbenzene complex, [CoIII(TQA)(OIPh)(OH)]2+(1), is synthesized and characterized structurally and spectroscopically. While1is a sluggish oxidant in oxidation reactions, it becomes a competent oxidant in oxygen atom transfer reactions, such as olefin epoxidation, in the presence of a small amount of proton. More interestingly,1shows a nucleophilic reactivity in aldehyde deformylation reaction, demonstrating that1has an amphoteric reactivity. Another interesting observation is that1can be used as an oxygen atom donor in the generation of high‐valent metal‐oxo complexes. To our knowledge, we present the first crystal structure of a CoIIIiodosylbenzene complex and the unprecedented reactivity of metal‐iodosylarene adduct. 
    more » « less
  5. The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds. 
    more » « less