We report on spectroscopic measurements on the 4f76s28S7/2∘−4f7(8S∘)6s6p(1P∘)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P∘)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P∘)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results. 
                        more » 
                        « less   
                    
                            
                            Mid-infrared Doppler-free saturation absorption spectroscopy of the Q branch of CH 4 ν 3  = 1 band using a rapid-scanning continuous-wave optical parametric oscillator
                        
                    
    
            We have developed a mid-infrared Doppler-free saturation absorption spectroscopy apparatus that employs a commercial continuous-wave optical parametric oscillator (CW OPO), complemented by a home-built automation and wavelength scanning system. Here, we report a comprehensive spectral scan of the Q branch transitions of theν3 = 1 band of methane (CH4) with an average linewidth (FWHM) of 4.5 MHz. The absolute frequency calibration was achieved using previously reported transition frequencies determined using optical frequency combs, while a Fabry–Perot etalon was used for the relative frequency calibration. We report 15 transitions with improved accuracies of 1.13 MHz (3.76 × 10−5 cm−1). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1955310
- PAR ID:
- 10525686
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 49
- Issue:
- 15
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 4230
- Size(s):
- Article No. 4230
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cadmium is laser-cooled and trapped with excitations to triplet states with UVA light, first using only the 67 kHz wide 326 nm intercombination line and subsequently, for large loading rates, the 25 MHz wide 361 nm3P2→3D3transition. Eschewing the hard UV 229 nm1S0→1P1transition, only small magnetic fields gradients, less than 6 G cm−1, are required enabling a 100% transfer of atoms from the 361 nm trap to the 326 nm narrow-line trap. All 8 stable cadmium isotopes are straightforwardly trapped, including two nuclear-spin- fermions that require no additional repumping. We observe evidence of3P2collisions limiting the number of trapped metastable atoms, report isotope shifts for111Cd and113Cd of the 326 nm1S0→3P1, 480nm3P1→3S1, and 361 nm3P2→3D3transitions, and measure the114Cd 5s5p3P2→ 5s5d3D3transition frequency to be 830 096 573(15) MHz.more » « less
- 
            We report the first measurement of sub-Doppler molecular response using a frequency comb by employing the comb as a probe in optical-optical double-resonance spectroscopy. We use a 3.3 μm continuous wave pump and a 1.67 μm comb probe to detect sub-Doppler transitions to the 2ν3 and 3ν3 bands of methane with ∼1.7 MHz center frequency accuracy. These measurements provide the first verification of the accuracy of theoretical predictions from highly vibrationally excited states, needed to model the high-temperature spectra of exoplanets. Transition frequencies to the 3ν3 band show good agreement with the TheoReTS line list.more » « less
- 
            Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.more » « less
- 
            We report the elevated temperature (22 °C [Formula: see text] T [Formula: see text] 600 °C) dielectric function properties of melt grown single crystal ZnGa2O4using a spectroscopic ellipsometry approach. A temperature dependent Cauchy dispersion analysis was applied across the transparent spectrum to determine the high-frequency index of refraction yielding a temperature dependent slope of 3.885(2) × 10−5 K−1. A model dielectric function critical point analysis was applied to examine the dielectric function and critical point transitions for each temperature. The lowest energy M0-type critical point associated with the direct bandgap transition in ZnGa2O4is shown to red-shift linearly as the temperature is increased with a subsequent slope of −0.72(4) meV K−1. Furthermore, increasing the temperature results in a reduction of the excitonic amplitude and increase in the exciton broadening akin to exciton evaporation and lifetime shortening. This matches current theoretical understanding of excitonic behavior and critically provides justification for an anharmonic broadened Lorentz oscillator to be applied for model analysis of excitonic contributions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
