Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have developed a mid-infrared Doppler-free saturation absorption spectroscopy apparatus that employs a commercial continuous-wave optical parametric oscillator (CW OPO), complemented by a home-built automation and wavelength scanning system. Here, we report a comprehensive spectral scan of the Q branch transitions of theν3 = 1 band of methane (CH4) with an average linewidth (FWHM) of 4.5 MHz. The absolute frequency calibration was achieved using previously reported transition frequencies determined using optical frequency combs, while a Fabry–Perot etalon was used for the relative frequency calibration. We report 15 transitions with improved accuracies of 1.13 MHz (3.76 × 10−5 cm−1).more » « less
-
Vibronically resolved laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down (CRD) spectra of the electronic transition of the calcium isopropoxide [CaOCH(CH 3 ) 2 ] radical have been obtained under jet-cooled conditions. An essentially constant energy separation of 68 cm −1 has been observed for the vibrational ground levels and all fundamental vibrational levels accessed in the LIF measurement. To simulate the experimental spectra and assign the recorded vibronic bands, Franck–Condon (FC) factors and vibrational branching ratios (VBRs) are predicted from vibrational modes and their frequencies calculated using the complete-active-space self-consistent field (CASSCF) and equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) methods. Combined with the calculated electronic transition energy, the computational results, especially those from the EOM-CCSD calculations, reproduced the experimental spectra with considerable accuracy. The experimental and computational results suggest that the FC matrix for the studied electronic transition is largely diagonal, but transitions from the vibrationless levels of the à state to the X̃-state levels of the CCC bending ( ν 14 and ν 15 ), CaO stretch ( ν 13 ), and CaOC asymmetric stretch ( ν 9 and ν 11 ) modes also have considerable intensities. Transitions to low-frequency in-plane [ ν 17 ( a ′)] and out-of-plane [ ν 30 ( a ′′)] CaOC bending modes were observed in the experimental LIF/DF spectra, the latter being FC-forbidden but induced by the pseudo-Jahn–Teller (pJT) effect. Both bending modes are coupled to the CaOC asymmetric stretch mode via the Duschinsky rotation, as demonstrated in the DF spectra obtained by pumping non-origin vibronic transitions. The pJT interaction also induces transitions to the ground-state vibrational level of the ν 10 ( a ′) mode, which has the CaOC bending character. Our combined experimental and computational results provide critical information for future direct laser cooling of the target molecule and other alkaline earth monoalkoxide radicals.more » « less
-
The fine and hyperfine interactions in PbF have been studied using the laser-induced fluorescence (LIF) spectroscopy method. Cold PbF molecular beam was produced by laser-ablating a Pb rod under jet-cooled conditions, followed by the reaction with SF6. The LIF excitation spectrum of the (0, 0) band in the B2Σ+–X2Π1/2 system of the 208PbF, 207PbF, and 206PbF isotopologues has been recorded with rotational, fine structure, and hyperfine-structure resolution. Transitions in the LIF spectrum were assigned and combined with the previous X2Π3/2–X2Π1/2 emission spectrum in the near-infrared region [Ziebarth et al., J. Mol. Spectrosc. 191, 108–116 (1998)] and the X2Π1/2 state pure rotational spectrum of PbF [Mawhorter et al., Phys. Rev. A 84, 022508 (2011)] in a global fit to derive the rotational, spin–orbit, spin–rotation, and hyperfine interaction parameters of the ground (X2Π1/2) and the excited (B2Σ+) electronic states. Molecular constants determined in the present work are compared with previously reported values. Particularly, the significance of the hyperfine parameters, A⊥ and A‖, of 207Pb is discussed.more » « less
An official website of the United States government
