Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the “hydration problem” in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.
more »
« less
The molecular basis for hydrodynamic properties of PEGylated human serum albumin
Polyethylene glycol (PEG) conjugation provides a protective modification that enhances the pharmacokinetics and solubility of proteins for therapeutic use. A knowledge of the structural ensemble of these PEGylated proteins is necessary to understand the molecular details that contribute to their hydrodynamic and colligative properties. Because of the large size and dynamic flexibility of pharmaceutically important PEGylated proteins, the determination of structure is challenging. In addi- tion, the hydration of these conjugates that contain large polymers is difficult to determine with traditional methods that identify only first shell hydration water, which does not account for the complete hydrodynamic volume of a macromolecule. Here, we demonstrate that structural ensembles, generated by coarse-grained simulations, can be analyzed with HullRad and used to predict sedimentation coefficients and concentration-dependent hydrodynamic and diffusion nonideality coefficients of PEGylated proteins. A knowledge of these concentration-dependent properties enhances the ability to design and analyze new modified protein therapeutics. HullRad accomplishes this analysis by effectively accounting for the complete hydration of a macromolecule, including that of flexible polymers.
more »
« less
- Award ID(s):
- 1931211
- PAR ID:
- 10525718
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Biophysical Journal
- Edition / Version:
- In Press
- ISSN:
- 0006-3495
- Subject(s) / Keyword(s):
- disorder ensemble
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Structural supercapacitors that simultaneously bear mechanical loads and store electrical energy have exciting potential for enhancing the efficiency of various mobile systems. However, a significant hurdle in developing practical structural supercapacitors is the inherent trade‐off between their mechanical properties and electrochemical capabilities, particularly within their electrolytes. This study demonstrates a tough polymer electrolyte with enhanced multifunctionality made through the controlled hydration of a solid polymer electrolyte with poly(lactic acid) (PLA) and lithium salts. Characterization via differential scanning calorimetry, X‐ray diffraction, and Fourier transform infrared spectroscopy confirms the consistent amorphous solid solution phase in varying salt concentrations, whether dried or hydrated. Electrochemical tests and tensile tests are performed to evaluate the ionic conductivity and mechanical properties of these electrolytes. The results indicate that the strategic incorporation of water in the polymer electrolyte significantly enhances the ionic conductivity while preserving its mechanical properties. A specific composition demonstrated a remarkable increase in ionic conductivity (3.11 µS cm−1) coupled with superior toughness (15.4 MJ m−3), significantly surpassing the base polymer. These findings open new horizons for integrating electrochemical functionality into structural polymers without compromising their mechanical properties. Additionally, the paper reports the successful fabrication and testing of structural supercapacitor prototypes combining carbon fibers with fabricated electrolytes, showcasing their potential for diverse applications.more » « less
-
Starting with a crystal structure of a macromolecule, computational structural modeling can help to understand the associated biological processes, structure and function, as well as to reduce the number of further experiments required to characterize a given molecular entity. In the past decade, two classes of powerful automated tools for investigating the binding properties of proteins have been developed: the protein–protein docking program ClusPro and the FTMap and FTSite programs for protein hotspot identification. These methods have been widely used by the research community by means of publicly available online servers, and models built using these automated tools have been reported in a large number of publications. Importantly, additional experimental information can be leveraged to further improve the predictive power of these approaches. Here, an overview of the methods and their biological applications is provided together with a brief interpretation of the results.more » « less
-
Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.more » « less
-
Abstract The fundamental molecules of life are polymers. Prominent examples include nucleic acids and proteins, both of which exhibit a large array of mechanical properties and three-dimensional shapes. The bending rigidity of individual polymers is quantified by the persistence length. The shape of a polymer, dictated by the topology of the polymer backbone, a line trace through the center of the polymer along the contour path, is also an important characteristic. Common biomolecular architectures include linear, cyclic (ring-like), and branched structures; combinations of these can also exist, as in complex polymer networks. Determination of persistence length and shape are largely informative to polymer function and stability in biological environments. Here we demonstratePersistence lengthShapePolymer (PS Poly), a near-fully automated algorithm designed to obtain polymer persistence length and shape from single molecule images obtained in physiologically relevant fluid conditions via atomic force microscopy. The algorithm, which involves image reduction via skeletonization followed by end point and branch point detection, is capable of rapidly analyzing thousands of polymers with subpixel precision. Algorithm outputs were verified by analysis of deoxyribonucleic acid, a very well characterized macromolecule. The method was further demonstrated by application to candidalysin, a recently discovered and complex virulence factor fromCandida albicans. Candidalysin forms polymers of highly variable shape and contour length and represents the first peptide toxin identified in a human fungal pathogen. PS Poly is a robust and general algorithm. It can be used to extract fundamental information about polymer backbone stiffness, shape, and more generally, polymerization mechanisms.more » « less
An official website of the United States government

