Although androgens are widely studied in the context of aggression, androgenic influences on prosocial behaviours have been less explored. We examined testosterone's (T) influence on prosocial and aggressive responses in a positively valenced social context (interacting with a pairbond partner) and a negatively valenced context (interacting with an intruder) in socially monogamous Mongolian gerbils. T increased and decreased prosocial responses in the same individuals towards a pairbond partner and an intruder, respectively, both within 30 min, but did not affect aggression. T also had persistent effects on prosocial behaviour; males in which T initially increased prosocial responses towards a partner continued to exhibit elevated prosocial responses towards an intruder male days later until a second T injection rapidly eliminated those responses. Thus, T surges can rapidly match behaviour to current social context, as well as prime animals for positive social interactions in the future. Neuroanatomically, T rapidly increased hypothalamic oxytocin, but not vasopressin, cellular responses during interactions with a partner. Together, our results indicate that T can facilitate and inhibit prosocial behaviours depending on social context, that it can influence prosocial responses across rapid and prolonged time scales, and that it affects oxytocin signalling mechanisms that could mediate its context-dependent behavioural influences.
more »
« less
Testosterone facilitates nonreproductive, context-appropriate pro- and anti-social behavior in female and male Mongolian gerbils
A growing body of literature suggests that testosterone (T) rapidly modulates behavior in a context-specific manner. However, the timescales in which T can rapidly mediate distinct types of behavior, such as pro- vs. anti- social responses, has not been studied. Thus, here we examined acute T influences on social behavior in male and female Mongolian gerbils in nonreproductive contexts. Females and males received an injection of either saline or T and were first tested in a social interaction test with a same-sex, familiar peer. 5 min after the peer interaction, subjects then underwent a resident-intruder test with a novel, same-sex conspecific. After another 5 min, gerbils were tested in a novel object task to test context-specificity (i.e., social vs. nonsocial) of T effects on behavior. Within 1 h, males and females injected with T exhibited more huddling with a peer but more active avoidance of and less time spent in proximity of an intruder than did animals injected with saline. T effects on behavior were specific to social contexts, such that T did not influence investigation of the novel object. Together these findings show that T rapidly promotes pro-social responses to a familiar peer and anti-social responses to an intruder in the same individuals within 5 min of experiencing these disparate social contexts. This demonstrates that T rapidly facilitates behavior in a context-appropriate manner outside the context of reproduction and reveals that rapid effects of T on behavior are not restricted to males.
more »
« less
- Award ID(s):
- 2032610
- PAR ID:
- 10525794
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Hormones and Behavior
- Volume:
- 156
- Issue:
- C
- ISSN:
- 0018-506X
- Page Range / eLocation ID:
- 105436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Taborsky, Michael (Ed.)Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding).more » « less
-
null (Ed.)Abstract Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus . Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H 2 O 2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans.more » « less
-
Abstract The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles1–9. How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinalin vivofiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships.more » « less
-
Behavior is often linked to gonadal sex; however, ecological or social environments can induce plasticity in sex-biased behaviors. In biparental species, pairs may divide offspring care into two parental roles, in which one parent specializes in territory defense and the other in nest care. The African cichlid fish Julidochromis marlieri displays plasticity in sex-biased behaviors. In Lake Tanganyika, J. marlieri form female-larger pairs in which the female is more aggressive than the male who performs more nest care, but under laboratory conditions, male-larger pairs can be formed in which these sex-biased behaviors are reversed. We investigated the influence of social environment on behavior by observing how individuals in both pair-types respond to conspecific intruders of either sex. We examined behavioral responses to three factors: sex of the subject, relative size of the subject, and the sex of the intruder. We confirm that relative size is a factor in behavior. The larger fish in the pair is more aggressive than the smaller fish is towards an intruder. While neither fish in the female-larger pairs varied their behaviors in response to the sex of the intruder, both members of the male-larger pairs were sensitive to intruder sex. Both individuals in the male-larger pairs engaged in more biting behaviors towards the intruder. Intruder biting behaviors strongly correlated with the biting behavior of the larger individual in the pair and occurred more frequently when encountering pairs with same sex as the larger fish when compared to pairs with the same sex as the smaller fish. Our results support the role of the social environment as a contributor in the expression of sex-biased behavior.more » « less
An official website of the United States government

