skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic Scoring of Metaphor Creativity with Large Language Models
Metaphor is crucial in human cognition and creativity, facilitating abstract thinking, analogical reasoning, and idea generation. Typically, human raters manually score the originality of responses to creative thinking tasks – a laborious and error-prone process. Previous research sought to remedy these risks by scoring creativity tasks automatically using semantic distance and large language models (LLMs). Here, we extend research on automatic creativity scoring to metaphor generation – the ability to creatively describe episodes and concepts using nonliteral language. Metaphor is arguably more abstract and naturalistic than prior targets of automated creativity assessment. We collected 4,589 responses from 1,546 participants to various metaphor prompts and corresponding human creativity ratings. We fine-tuned two open-source LLMs (RoBERTa and GPT-2) – effectively “teaching” them to score metaphors like humans – before testing their ability to accurately assess the creativity of new metaphors. Results showed both models reliably predicted new human creativity ratings (RoBERTa r = .72, GPT-2 r = .70), significantly more strongly than semantic distance (r = .42). Importantly, the fine-tuned models generalized accurately to metaphor prompts they had not been trained on (RoBERTa r = .68, GPT-2 r = .63). We provide open access to the fine-tuned models, allowing researchers to assess metaphor creativity in a reproducible and timely manner.  more » « less
Award ID(s):
2155070 1920653
PAR ID:
10525807
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Creativity Research Journal
ISSN:
1040-0419
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Automated scoring is a current hot topic in creativity research. However, most research has focused on the English language and popular verbal creative thinking tasks, such as the alternate uses task. Therefore, in this study, we present a large language model approach for automated scoring of a scientific creative thinking task that assesses divergent ideation in experimental tasks in the German language. Participants are required to generate alternative explanations for an empirical observation. This work analyzed a total of 13,423 unique responses. To predict human ratings of originality, we used XLM‐RoBERTa (Cross‐lingual Language Model‐RoBERTa), a large, multilingual model. The prediction model was trained on 9,400 responses. Results showed a strong correlation between model predictions and human ratings in a held‐out test set (n = 2,682;r = 0.80; CI‐95% [0.79, 0.81]). These promising findings underscore the potential of large language models for automated scoring of scientific creative thinking in the German language. We encourage researchers to further investigate automated scoring of other domain‐specific creative thinking tasks. 
    more » « less
  2. null (Ed.)
    Abstract Creativity research requires assessing the quality of ideas and products. In practice, conducting creativity research often involves asking several human raters to judge participants’ responses to creativity tasks, such as judging the novelty of ideas from the alternate uses task (AUT). Although such subjective scoring methods have proved useful, they have two inherent limitations—labor cost (raters typically code thousands of responses) and subjectivity (raters vary on their perceptions and preferences)—raising classic psychometric threats to reliability and validity. We sought to address the limitations of subjective scoring by capitalizing on recent developments in automated scoring of verbal creativity via semantic distance, a computational method that uses natural language processing to quantify the semantic relatedness of texts. In five studies, we compare the top performing semantic models (e.g., GloVe, continuous bag of words) previously shown to have the highest correspondence to human relatedness judgements. We assessed these semantic models in relation to human creativity ratings from a canonical verbal creativity task (AUT; Studies 1–3) and novelty/creativity ratings from two word association tasks (Studies 4–5). We find that a latent semantic distance factor—comprised of the common variance from five semantic models—reliably and strongly predicts human creativity and novelty ratings across a range of creativity tasks. We also replicate an established experimental effect in the creativity literature (i.e., the serial order effect) and show that semantic distance correlates with other creativity measures, demonstrating convergent validity. We provide an open platform to efficiently compute semantic distance, including tutorials and documentation ( https://osf.io/gz4fc/ ). 
    more » « less
  3. null (Ed.)
    Metaphors are a common way to express creative language, yet the cognitive basis of figurative language production remains poorly understood. Previous studies found that higher creative individuals can better comprehend novel metaphors, potentially due to a more flexible semantic memory network structure conducive to remote conceptual combination. The present study extends this domain to creative metaphor production and examined whether the ability to produce creative metaphors is related to variation in the structure of semantic memory. Participants completed a creative metaphor production task and two verbal fluency tasks. They were divided into two equal groups based on their creative metaphor production score. The semantic networks of these two groups were estimated and analyzed based on their verbal fluency responses using a computational network science approach. Results revealed that the semantic networks of high-metaphor producing individuals were more flexible, clustered, and less rigid than that of the low-metaphor producing individuals. Importantly, these results replicated across both semantic categories. The findings provide the first evidence that a flexible, clustered, and less rigid semantic memory structure relates to people’s ability to produce figurative language, extending the growing literature on the role of semantic networks in creativity to the domain of metaphor production. 
    more » « less
  4. Abstract Creativity is increasingly recognized as a core competency for the 21st century, making its development a priority in education, research, and industry. To effectively cultivate creativity, researchers and educators need reliable and accessible assessment tools. Recent software developments have significantly enhanced the administration and scoring of creativity measures; however, existing software often requires expertise in experiment design and computer programming, limiting its accessibility to many educators and researchers. In the current work, we introduce CAP—the Creativity Assessment Platform—a free web application for building creativity assessments, collecting data, and automatically scoring responses (cap.ist.psu.edu). CAP allows users to create custom creativity assessments in ten languages using a simple, point-and-click interface, selecting from tasks such as the Short Story Task, Drawing Task, and Scientific Creative Thinking Test. Users can automatically score task responses using machine learning models trained to match human creativity ratings—with multilingual capabilities, including the new Cross-Lingual Alternate Uses Scoring (CLAUS), a large language model achieving strong prediction of human creativity ratings in ten languages. CAP also provides a centralized dashboard to monitor data collection, score assessments, and automatically generate text for a Methods section based on the study’s tasks, metrics, and instructions—with a single click—promoting transparency and reproducibility in creativity assessment. Designed for ease of use, CAP aims to democratize creativity measurement for researchers, educators, and everyone in between. 
    more » « less
  5. Creativity research often relies on human raters to judge the novelty of participants’ responses on open-ended tasks, such as the Alternate Uses Task (AUT). Albeit useful, manual ratings are subjective and labor intensive. To address these limitations, researchers increasingly use automatic scoring methods based on a natural language processing technique for quantifying the semantic distance between words. However, many methodological choices remain open on how to obtain semantic distance scores for ideas, which can significantly impact reliability and validity. In this project, we propose a new semantic distance-based method, maximum associative distance (MAD), for assessing response novelty in AUT. Within a response, MAD uses the semantic distance of the word that is maximally remote from the prompt word to reflect response novelty. We compare the results from MAD with other competing semantic distance-based methods, including element-wise-multiplication—a commonly used compositional model—across three published datasets including a total of 447 participants. We found MAD to be more strongly correlated with human creativity ratings than the competing methods. In addition, MAD scores reliably predict external measures such as openness to experience. We further explored how idea elaboration affects the performance of various scoring methods and found that MAD is closely aligned with human raters in processing multi-word responses. The MAD method thus improves the psychometrics of semantic distance for automatic creativity assessment, and it provides clues about what human raters find creative about ideas. 
    more » « less