skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring gravitational attraction with a lattice atom interferometer
Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity, the gravitational constant, deviations from Newtonian gravity and general relativity. However, using atoms in free fall limits measurement time to a few seconds, and much less when measuring interactions with a small source mass. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic efects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened ffth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges, compact gravimetry, measuring the gravitational Aharonov–Bohm effect and the gravitational constant, and testing whether the gravitational field has quantum properties.  more » « less
Award ID(s):
1708160 2208029
PAR ID:
10525888
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
631
Issue:
8021
ISSN:
0028-0836
Page Range / eLocation ID:
515 to 520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two kinds of multidimensional atom interferometers are demonstrated that are capable of measuring both the magnitude and direction of applied inertial forces. These interferometers, built from ultracold Bose-Einstein condensed rubidium atoms, use an original design that operates entirely within the Bloch bands of an optical lattice. Through time-dependent lattice position control, we realize Bloch oscillations in two dimensions and a vector atomic Michelson interferometer. Fits to the observed Bloch oscillations demonstrate the measurement of an applied acceleration of 2galong two axes, wheregis Earth’s gravitational acceleration. For the Michelson interferometer, we perform Bayesian inferencing from a 49-channel output by repeating experiments for two-axis accelerations and demonstrate vector parameter estimation. Accelerations can be measured from single experimental runs and do not require repeated shots to construct a fringe. The performance of our device is near the quantum limit for the interferometer size and quantum detection efficiency of the atoms. 
    more » « less
  2. Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications. Their performance, however, has been limited by the available interrogation time of freely falling atoms in a gravitational field. By suspending the spatially separated atomic wave packets in a lattice formed by the mode of an optical cavity, we realize an interrogation time of 20 seconds. Our approach allows gravitational potentials to be measured by holding, rather than dropping, atoms. After seconds of hold time, gravitational potential energy differences from as little as micrometers of vertical separation generate megaradians of interferometer phase. This trapped geometry suppresses the phase variance due to vibrations by three to four orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters. 
    more » « less
  3. We present enabling experimental tools and atom interferometer implementations in a vertical “fountain” geometry with ytterbium Bose–Einstein condensates. To meet the unique challenge of the heavy, non-magnetic atom, we apply a shaped optical potential to balance against gravity following evaporative cooling and demonstrate a double Mach–Zehnder interferometer suitable for applications such as gravity gradient measurements. Furthermore, we also investigate the use of a pulsed optical potential to act as a matter wave lens in the vertical direction during expansion of the Bose–Einstein condensate. This method is shown to be even more effective than the aforementioned shaped optical potential. The application of this method results in a reduction of velocity spread (or equivalently an increase in source brightness) of more than a factor of five, which we demonstrate using a two-pulse momentum-space Ramsey interferometer. The vertical geometry implementation of our diffraction beams ensures that the atomic center of mass maintains overlap with the pulsed atom optical elements, thus allowing extension of atom interferometer times beyond what is possible in a horizontal geometry. Our results thus provide useful tools for enhancing the precision of atom interferometry with ultracold ytterbium atoms. 
    more » « less
  4. Atomic accelerometers and gravimeters are usually based on freely falling atoms in atomic fountains, which not only limits their size but also their robustness to environmental factors, such as tilts, magnetic fields, and vibrations. Such limitations have precluded their broad adoption in the field, for geophysics, geology, and inertial navigation. More recently, atom interferometers based on holding atoms in an optical lattice have been developed. Such gravimeters also suppress the influence of vibrations in the frequency range of ∼1 Hz and above by several orders of magnitude relative to conventional atomic gravimeters. Here, we show that such interferometers are robust to tilts of more than 8 mrad with respect to the vertical and can suppress the effect of even strong environmental magnetic fields and field gradients by using atoms in the F=3, 4 hyperfine ground states as co-magnetometers, potentially eliminating the need for shielding. We demonstrate gravimeter sensitivity of 0.7 mGal/Hz (1 mGal = 10 μm/s2) in a compact geometry where atoms only travel over millimeters of space. 
    more » « less
  5. Triaxial neutron stars can be sources of continuous gravitational radiation detectable by ground-based interferometers. The amplitude of the emitted gravitational wave can be greatly affected by the state of the hydrodynamical fluid flow inside the neutron star. In this work, we examine the most triaxial models along two sequences of constant rest mass, confirming their dynamical stability. We also study the response of a triaxial figure of quasiequilibrium under a variety of perturbations that lead to different fluid flows. Starting from the general relativistic compressible analog of the Newtonian Jacobi ellipsoid, we perform simulations of Dedekind-type flows. We find that in some cases the triaxial neutron star resembles a Riemann-S-type ellipsoid with minor rotation and gravitational wave emission as it evolves towards axisymmetry. The present results highlight the importance of understanding the fluid flow in the interior of a neutron star in terms of its gravitational wave content. 
    more » « less