The use of flashlamp annealing as a low-temperature alternative or supplement to thermal annealing is investigated. Flashlamp annealing and thermal annealing were conducted on 100 nm thick indium tin oxide (ITO) films deposited on glass to compare the properties of films under different annealing methods. The ITO samples had an average initial sheet resistance of 50 Ω/sq. After flashlamp annealing, the sheet resistance was reduced to 33 Ω/sq only, while by thermal annealing at 210 °C for 30 min, a sheet resistance of 29 Ω/sq was achieved. Using a combination of flashlamp annealing and thermal annealing at 155 °C for 5 min, a sheet resistance of 29 Ω/sq was achieved. X-ray diffraction analysis confirmed that flashlamp annealing can be used to crystallize ITO. Flashlamp annealing allows for low-temperature crystallization of ITO on a time scale of 1–3 min. Through electrical and optical characterizations, it was determined that flashlamp annealing can achieve similar electrical and optical properties as thermal annealing. Flashlamp offers the method of low-temperature annealing, which is particularly suitable for temperature sensitive substrates.
more »
« less
The advantages of methanol-amine solvent mixtures in solution processing of Ge-Sb-S chalcogenide glass thin films
We report on the substantial influence of methanol presence on the dissolution mechanism of Ge20Sb5S75 bulk glass with subsequent superior properties of thin films deposited from such solutions. Raman spectroscopy confirmed significant differences in structural features present in glass solutions prepared from pure amines (n-propylamine and n-butylamine) and their mixtures with methanol. The experiments with dissolved elemental sulfur and Ge25S75 glass analog proved that both antimony and methanol presence induce further splitting of the Ge4S104- cluster structure, which fundamentally affects the properties of deposited thin films. Significant structural and compositional differences were found not only in solutions and as-prepared samples, but also after thin films’ thermal treatment (hard baking up to 210°C). The as-prepared thin films deposited from amine-methanol mixtures possessed the exact composition of source bulk glass while thin films of other solvent formulations exhibited sulfur deficiency. The annealing up to 210°C only highlighted this difference. As a result of the different structure of the thin films prepared in this way, the other benefits of methanol addition were found, namely an increase in the refractive index by approx. 0.1 independent of the annealing temperature, or a lower thermally induced thickness contraction (up to 7.5%).
more »
« less
- Award ID(s):
- 2106457
- PAR ID:
- 10525910
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials Chemistry and Physics
- Volume:
- 313
- Issue:
- C
- ISSN:
- 0254-0584
- Page Range / eLocation ID:
- 128792
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present structural, magnetic, and optical properties of multiferroic hexagonal YbFeO3 thin films, deposited on single crystal (001) Al2O3 and (111) ysz substrates by a magnetron sputtering system. Interestingly, the thermal stress affects YbFeO3 films on Al2O3 and ysz very differently. Although hexagonal-YbFeO3/Al2O3 films changed from a hexagonal to an orthorhombic phase due to annealing above 1000 °C, hexagonal-YbFeO3/ysz films remained mostly unaffected even after annealing at 1200 °C. The electronic excitations of the YbFeO3 thin films are dominated by Fe3+ d to d on-site electronic excitations as well as O 2p to Fe 3d, Yb 6s, and 5d charge-transfer excitations, and these excitations for hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films are distinctly different, consistent with the crystal field environments in the hexagonal and orthorhombic phases of YbFeO3. The room temperature energy band gaps of the hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films were measured to be ∼1.95 ± 0.05 eV and ∼2.40 ± 0.05 eV, respectively.more » « less
-
We investigate the beneficial effects of rapid thermal annealing on structure and photoluminescence of PbSe thin films on GaAs (001) grown below 150 °C, with a goal of low temperature integration for infrared optoelectronics. Thin films of PbSe deposited on GaAs by molecular beam epitaxy are epitaxial at these reduced growth temperatures, yet the films are highly defective with a mosaic grain structure with low angle and dendritic boundaries following coalescence. Remarkably, we find that rapid thermal annealing for as short as 180 s at temperatures between 300 and 425 °C in nitrogen ambient leads to extensive re-crystallization and transformation of these grain boundaries. The annealing at the same time dramatically improves the band edge luminescence at 3.7 μm from previously undetectable levels to nearly half as intense as our best conventionally grown PbSe films at 300 °C. We show using an analysis of laser pump-power dependent photoluminescence measurements that this dramatic improvement in the photoluminescence intensity is due to a reduction in the trap-assisted recombination. However, we find it much less correlated with improved structural parameters determined by x-ray diffraction rocking curves, thereby pointing to the importance of eliminating point defects over extended defects. Overall, the success of rapid thermal annealing in improving the luminescent properties of low growth temperature PbSe is a step toward the integration of PbSe infrared optoelectronics in low thermal budget, back end of line compatible fabrication processes.more » « less
-
null (Ed.)The structures of long-chain alkanethiols (C 18 H 37 SH) chemisorbed on an Au(111) single crystal were investigated using reflection high-energy electron diffraction (RHEED). The primary structure observed as a major species in the as-deposited films contains gold adatoms below the sulfur headgroups. Between the small ordered domains with the alkyl chains tilting toward six directions are azimuthally disorderly packed regions, with a similar average tilt of 30.2°. In contrast, a significant reduction in the coverage of gold adatoms is found in the thermally-induced phase. This superlattice is shown to contain a mixture of two sulfur arrangements, both of which exhibit a small S–S distance, and the pairing of the aliphatic chains. A microscopic picture is then given for the structural transition. These findings demonstrate how the RHEED technique may be used to resolve structures of nanometer-thick thin films with multiple orders at the interfaces.more » « less
-
Abstract Vapor‐pressure mismatched materials such as transition metal chalcogenides have emerged as electronic, photonic, and quantum materials with scientific and technological importance. However, epitaxial growth of vapor‐pressure mismatched materials are challenging due to differences in the reactivity, sticking coefficient, and surface adatom mobility of the mismatched species constituting the material, especially sulfur containing compounds. Here, a novel approach is reported to grow chalcogenides—hybrid pulsed laser deposition—wherein an organosulfur precursor is used as a sulfur source in conjunction with pulsed laser deposition to regulate the stoichiometry of the deposited films. Epitaxial or textured thin films of sulfides with variety of structure and chemistry such as alkaline metal chalcogenides, main group chalcogenides, transition metal chalcogenides, and chalcogenide perovskites are demonstrated, and structural characterization reveal improvement in thin film crystallinity, and surface and interface roughness compared to the state‐of‐the‐art. The growth method can be broadened to other vapor‐pressure mismatched chalcogenides such as selenides and tellurides. This work opens up opportunities for broader epitaxial growth of chalcogenides, especially sulfide‐based thin film technological applications.more » « less
An official website of the United States government

