Abstract Hyperspectral imaging has broad applications and impacts in areas including environmental science, weather, and geo/space exploration. The intrinsic spectral–spatial structures and potential multi-level features in different frequency bands make multilayer graph an intuitive model for hyperspectral images (HSI). To study the underlying characteristics of HSI and to take the advantage of graph signal processing (GSP) tools, this work proposes a multilayer graph spectral analysis for hyperspectral images based on multilayer graph signal processing (M-GSP). More specifically, we present multilayer graph (MLG) models and tensor representations for HSI. By exploring multilayer graph spectral space, we develop MLG-based methods for HSI applications, including unsupervised segmentation and supervised classification. Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral–spatial information extraction.
more »
« less
Body Motion Segmentation via Multilayer Graph Processing for Wearable Sensor Signals
Human body motion segmentation plays a major role in many applications, ranging from computer vision to robotics. Among a variety of algorithms, graph-based approaches have demonstrated exciting potential in motion analysis owing to their power to capture the underlying correlations among joints. However, most existing works focus on simpler single-layer geometric structures, whereas multi-layer spatial-temporal graph structure can provide more informative results. To provide an interpretable analysis on multilayer spatial-temporal structures, we revisit the emerging field of multilayer graph signal processing (M-GSP), and propose novel approaches based on M-GSP to human motion segmentation. Specifically, we model the spatial-temporal relationships via multilayer graphs (MLG) and introduce M-GSP spectrum analysis for feature extraction.We present two different M-GSP based algorithms for unsupervised segmentation in the MLG spectrum and vertex domains, respectively. Our experimental results demonstrate the robustness and effectiveness of our proposed methods.
more »
« less
- Award ID(s):
- 2029848
- PAR ID:
- 10525928
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Open Journal of Signal Processing
- ISSN:
- 2644-1322
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Event-based cameras have been designed for scene motion perception - their high temporal resolution and spatial data sparsity converts the scene into a volume of boundary trajectories and allows to track and analyze the evolution of the scene in time. Analyzing this data is computationally expensive, and there is substantial lack of theory on dense-in-time object motion to guide the development of new algorithms; hence, many works resort to a simple solution of discretizing the event stream and converting it to classical pixel maps, which allows for application of conventional image processing methods. In this work we present a Graph Convolutional neural network for the task of scene motion segmentation by a moving camera. We convert the event stream into a 3D graph in (x,y,t) space and keep per-event temporal information. The difficulty of the task stems from the fact that unlike in metric space, the shape of an object in (x,y,t) space depends on its motion and is not the same across the dataset. We discuss properties of of the event data with respect to this 3D recognition problem, and show that our Graph Convolutional architecture is superior to PointNet++. We evaluate our method on the state of the art event-based motion segmentation dataset - EV-IMO and perform comparisons to a frame-based method proposed by its authors. Our ablation studies show that increasing the event slice width improves the accuracy, and how subsampling and edge configurations affect the network performance.more » « less
-
null (Ed.)The COVID-19 pandemic severely changed the way of life in the United States (US). From early scattered regional outbreaks to current country-wide spread, and from rural areas to highly populated cities, the contagion exhibits diverse patterns at various timescales and locations. We thus conduct a graph frequency analysis to inves- tigate the spread patterns of COVID-19 in different US counties. The commute flows between all 3142 US counties were used to construct a graph capturing the population mobility. The numbers of daily confirmed COVID-19 cases per county were collected and represented as graph signals, which were then mapped into the frequency domain via the graph Fourier transform. The concept of graph frequency in Graph Signal Processing (GSP) enables the decomposition of graph signals (i.e., daily confirmed cases) into modes with smooth or rapid variations with respect to the underlying mobility graph. These different modes of variability are shown to relate to COVID-19 spread patterns within and across counties. Changes in the nature of spread within geographical regions are also revealed by graph frequency analysis at finer temporal scales. Overall, our GSP-based approach leverages case count and mobility data to unveil spatio-temporal contagion patterns of COVID-19 incidence for each US county. Results here support the promising prospect of using GSP tools for epidemiology knowledge discovery on graphs.more » « less
-
The role of perceptual organization in motion analysis has heretofore been minimal. In this work we demonstrate that the use of perceptual organization principles of temporal coherence (common fate) and spatial proximity can result in a robust motion segmentation algorithm that is able to handle drastic illumination changes, occlusion events, and multiple moving objects, without the use of object models. The adopted algorithm does not employ the traditional frame by frame motion analysis, but rather treats the image sequence as a single 3D spatio-temporal block of data. We describe motion using spatio-temporal surfaces, which we, in turn, describe as compositions of finite planar patches. These planar patches, referred to as temporal envelopes, capture the local nature of the motions. We detect these temporal envelopes using 3D-edge detection followed by Hough transform, and represent them with convex hulls. We present a graph-based method to group these temporal envelopes arising from one object based on Gestalt organizational principles. A probabilistic Bayesian network quantifies the saliencies of the relationships between temporal envelopes. We present results on sequences with multiple moving persons, significant occlusions, and scene illumination changes.more » « less
-
Networks (or graphs) are used to model the dyadic relations between entities in complex systems. Analyzing the properties of the networks reveal important characteristics of the underlying system. However, in many disciplines, including social sciences, bioinformatics, and technological systems, multiple relations exist between entities. In such cases, a simple graph is not sufficient to model these multiple relations, and a multilayer network is a more appropriate model. In this paper, we explore community detection in multilayer networks. Specifically, we propose a novel network decoupling strategy for efficiently combining the communities in the different layers using the Boolean primitives AND, OR, and NOT. Our proposed method, network decoupling, is based on analyzing the communities in each network layer individually and then aggregating the analysis results. We (i) describe our network decoupling algorithms for finding communities, (ii) present how network decoupling can be used to express different types of communities in multilayer networks, and (iii) demonstrate the effectiveness of using network decoupling for detecting communities in real-world and synthetic data sets. Compared to other algorithms for detecting communities in multilayer networks, our proposed network decoupling method requires significantly lower computation time while producing results of high accuracy. Based on these results, we anticipate that our proposed network decoupling technique will enable a more detailed analysis of multilayer networks in an efficient manner.more » « less
An official website of the United States government

