skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent and near‐term future changes in impacts‐relevant seasonal hydroclimate in the world's Mediterranean climate regions
Abstract Change over recent decades in the world's five Mediterranean Climate Regions (MCRs) of quantities of relevance to water resources, ecosystems and fire are examined for all seasons and placed in the context of changes in large‐scale circulation. Near‐term future projections are also presented. It is concluded that, based upon agreement between observational data sets and modelling frameworks, there is strong evidence of radiatively‐driven drying of the Chilean MCR in all seasons and southwest Australia in winter. Observed drying trends in California in fall, southwest southern Africa in fall, the Pacific Northwest in summer and the Mediterranean in summer agree with radiatively‐forced models but are not reproduced in a model that also includes historical sea surface temperature (SST) forcing, raising doubt about the human‐origin of these trends. Observed drying in the Mediterranean in winter is stronger than can be accounted for by radiative forcing alone and is also outside the range of the SST‐forced ensemble. It is shown that near surface vapour pressure deficit (VPD) is increasing almost everywhere but that, surprisingly, this is contributed to in the Southern Hemisphere subtropics to mid‐latitudes by a decline in low‐level specific humidity. The Southern Hemisphere drying, in terms of precipitation and specific humidity, is related to a poleward shift and strengthening of the westerlies with eddy‐driven subsidence on the equatorward side. Model projections indicate continued drying of Southern Hemisphere MCRs in winter and spring, despite ozone recovery and year‐round drying in the Mediterranean. Projections for the North American MCR are uncertain, with a large contribution from internal variability, with the exception of drying in the Pacific Northwest in summer. Overall the results indicate continued aridification of MCRs other than in North America with important implications for water resources, agriculture and ecosystems.  more » « less
Award ID(s):
2127684
PAR ID:
10525961
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
44
Issue:
11
ISSN:
0899-8418
Format(s):
Medium: X Size: p. 3792-3820
Size(s):
p. 3792-3820
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Southwest North America is projected by models to aridify, defined as declining summer soil moisture, under the influence of rising greenhouse gases. Here, we investigate the driving mechanisms of aridification that connect the oceans, atmosphere, and land surface across seasons. The analysis is based on atmosphere model simulations forced by imposed sea surface temperatures (SSTs). For the historical period, these are the observed ones, and the model is run to 2041 using SSTs that account for realistic and plausible evolutions of Pacific Ocean and Atlantic Ocean interannual to decadal variability imposed on estimates of radiatively forced SST change. The results emphasize the importance of changes in precipitation throughout the year for declines in summer soil moisture. In the worst-case scenario, a cool tropical Pacific and warm North Atlantic lead to reduced cool season precipitation and soil moisture. Drier soils then persist into summer such that evapotranspiration reduces and soil moisture partially recovers. In the best-case scenario, the opposite states of the oceans lead to increased cool season precipitation but higher evapotranspiration prevents this from increasing summer soil moisture. Across the scenarios, atmospheric humidity is primarily controlled by soil moisture: drier soils lead to reduced evapotranspiration, lower air humidity, and higher vapor pressure deficit (VPD). Radiatively forced change reduces fall precipitation via anomalous transient eddy moisture flux divergence. Fall drying causes soils to enter winter dry such that, even in the best-case scenario of cool season precipitation increase, soil moisture remains dry. Radiative forcing reduces summer precipitation aided by reduced evapotranspiration from drier soils. Significance StatementSouthwest North America has long been projected to undergo aridification under rising greenhouse gases. In this model-based paper, we examine how coupling across seasons between the atmosphere and land system moves the region toward reduced summer soil moisture. The results show the dominant control on summer soil moisture by precipitation throughout the year. It also shows that even in best-case scenarios when changes in decadal modes of ocean variability lead to increases in cool season precipitation, rising spring and summer evapotranspiration means this does not translate into increased summer soil moisture. The work places projections of regional aridification on a firmer basis of understanding of the ocean driving of the atmosphere and its coupling to the land system. 
    more » « less
  2. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less
  3. Abstract The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century. 
    more » « less
  4. Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change. 
    more » « less
  5. Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible: development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland. 
    more » « less