The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.
more »
« less
The central oxytocinergic system of the prairie vole
Abstract Oxytocin (OXT) is a peptide hormone and a neuropeptide that regulates various peripheral physiological processes and modulates behavioral responses in the central nervous system. While the humoral release occurs from the axons arriving at the median eminence, the neuropeptide is also released from oxytocinergic cell axons in various brain structures that contain its receptor, and from their dendrites in hypothalamic nuclei and potentially into the cerebrospinal fluid (CSF). Understanding oxytocin’s complex functions requires the knowledge on patterns of oxytocinergic projections in relationship to its receptor (OXTR). This study provides the first comprehensive examination of the oxytocinergic system in the prairie vole (Microtus ochrogaster), an animal exhibiting social behaviors that mirror human social behaviors linked to oxytocinergic functioning. Using light and electron microscopy, we characterized the neuroanatomy of the oxytocinergic system in this species. OXT+ cell bodies were found primarily in the hypothalamus, and axons were densest in subcortical regions. Examination of the OXT+ fibers and their relationship to oxytocin receptor transcripts (Oxtr) revealed that except for some subcortical structures, the presence of axons was not correlated with the amount ofOxtracross the brain. Of particular interest, the cerebral cortex that had high expression ofOxtrtranscripts contained little to no fibers. Electron microscopy is used to quantify dense cored vesicles (DCV) in OXT+ axons and to identify potential axonal release sites. The ependymal cells that line the ventricles were frequently permissive of DCV-containing OXT+ dendrites reaching the third ventricle. Our results highlight a mechanism in which oxytocin is released directly into the ventricles and circulates throughout the ventricular system, may serve as the primary source for oxytocin that binds to OXTR in the cerebral cortex.
more »
« less
- Award ID(s):
- 2021791
- PAR ID:
- 10525969
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Brain Structure and Function
- Volume:
- 229
- Issue:
- 7
- ISSN:
- 1863-2661
- Format(s):
- Medium: X Size: p. 1737-1756
- Size(s):
- p. 1737-1756
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Human societies are characterized by norms that restrict selfish behavior and promote cooperation. The oxytocin system is an important modulator of social behavior that may be involved in the evolution of cooperation. Oxytocin acts in both the nucleus accumbens and the anterior cingulate cortex to promote social bonding and social cohesion. Expression of theCD38andOXTRgenes is known to affect oxytocin secretion and binding, respectively, in these brain areas. The Andean highlands provide an excellent opportunity to evaluate the role of oxytocin in the evolution of cooperation. The rich archeological record spans 13,000 years of population growth and cooperative challenges through periods of highland exploration, hunting economies, agro‐pastoralism, and urbanization. Through allele trajectory modeling using both ancient and contemporary whole genomes, we find evidence for strong positive selection on theOXTRandCD38alleles linked with increased oxytocin signaling. These selection events commenced around 2.5 and 1.25 thousand years ago, placing them in the region's Upper Formative and Tiwanaku periods—a time of population growth, urbanization, and relatively low rates of violence. Along with remarkable and enduring cultural developments, increased oxytocin secretion and receptor binding in these brain areas may have facilitated large‐scale cooperation that promoted early urbanization in the Titicaca Basin of the Andean highlands.more » « less
-
The onset of parental care is associated with shifts in parents’ perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (Oxtr and Avpr1a) in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (Peromyscus californicus), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.more » « less
-
ABSTRACT The matrix of serotonergic axons (fibers) is a constant feature of neural tissue in vertebrate brains. Its fundamental role appears to be associated with the spatiotemporal control of neuroplasticity. The densities of serotonergic fibers vary across brain regions, but their development and maintenance remain poorly understood. A specific fiber concentration is achieved as the result of the dynamics of a large number of individual fibers, each of which can make trajectory decisions independently of other fibers. Bridging these processes, operating on very different spatial scales, remains a challenge in neuroscience. The study provides the first qualitative description of individually-tagged serotonergic axons in four selected telencephalic regions (cortical and subcortical) of the mouse brain. Based on our previous implementation of the Brainbow toolbox in this system, serotonergic fibers were labeled with random intensity combinations of three fluorophores and imaged with high-resolution confocal microscopy. All examined regions contained serotonergic fibers of diverse identities and morphologies, often traveling in close proximity to one another. Some fibers transitioned among several morphologies in the same imaged volume. High fiber densities appeared to be associated with highly tortuous fiber segments produced by some individual fibers. This study supports efforts to predictively model the self-organization of the serotonergic matrix in all vertebrates, including regenerative processes in the adult human brain.more » « less
-
The contribution of nature versus nurture to the development of human behavior has been debated for centuries. Here, we offer a piece to this complex puzzle by identifying the human endogenous oxytocin system—known for its critical role in mammalian sociality—as a system sensitive to its early environment and subject to epigenetic change. Recent animal work suggests that early parental care is associated with changes in DNA methylation of conserved regulatory sites within the oxytocin receptor gene ( OXTR m). Through dyadic modeling of behavior and OXTR m status across the first year and a half of life, we translated these findings to 101 human mother-infant dyads. We show that OXTR m is dynamic in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament. We provide evidence for an early window of environmental epigenetic regulation of the oxytocin system, facilitating the emergence of individual differences in human behavior.more » « less
An official website of the United States government
