Abstract The early‐to mid‐Pliocene (5.3–3 Ma), characterized by warmer temperatures and similar CO2concentrations to present day, is considered a useful analog for future warming scenarios. Geological evidence suggests that during the Pliocene, many modern‐day desert regions received higher levels of rainfall and supported large perennial lakes and wetter vegetation types. These wetter conditions have been difficult to reconcile with model predictions of 21st century drying over most subtropical land regions. Using an atmospheric General Circulation Model, we show that underestimates of Pliocene rainfall over certain areas in models may be related to insufficient sea surface temperature (SST) warmth simulated over relatively local eastern boundary current regions. When SSTs off the coast of California are raised to more closely match some proxy reconstructions, rainfall increases over much of adjacent western North America. Over the southwestern USA, this increased rainfall is mainly due to a convergent monsoonal circulation that develops over late boreal summer. A smaller wintertime increase in precipitation also occurs due to differences in rainfall associated with midlatitude cyclones. Wetter land conditions are expected to weaken upwelling‐favorable coastal winds, so that increased rainfall caused by coastal SST warming suggests a positive feedback that could help sustain wet, Pliocene‐like conditions.
more »
« less
Mean Summer Land Temperatures in the Southern California Coastal Zone: Connections With Ocean Processes
Abstract The cooling effect of the ocean on the Southern California coastal zone is investigated using a high‐resolution (4‐km) gridded surface meteorological data set (gridMET) of daily maximum temperature (Tmax), with focus on summer mean conditions, taken as the July–August–September (JAS) average. An empirical orthogonal function analysis reveals a coastal mode of JAS temperature covariability, distinct from a more energetic inland mode, that captures Tmax averaged across the Southern California coastal plain. The coastal mode temperature correlates significantly with, and has similar amplitude to, regional sea surface temperature (SST). High (low) summer land and sea surface temperatures, as well as inversion layer temperature differences, are associated with decreases (increases) of northerly coastal wind speeds and coastal cloudiness. The number of extreme heat days on land increases as regional SST increases (4.3 days °C−1), with heat wave days 10 times more likely during peak warm versus cool coastal mode years. The coastal zone was notably warmer and heat wave days peaked during the well documented marine heat wave events of 2014/15 and 2018 off Southern California. The marine variability associated with the coastal mode also has strong expression off the Baja California peninsula, presumably due to strong covarying winds in that area. As in previous studies, higher ocean temperatures are attributed to weaker summer winds, with associated reductions in ocean surface heat loss, coastal upwelling, and cloudiness.
more »
« less
- Award ID(s):
- 2209058
- PAR ID:
- 10525973
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 14
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.more » « less
-
A previous study demonstrated that atmospheric rivers (ARs) generate substantial air-sea fluxes in the northeast Pacific. Since the southeast Indian Ocean is one of the active regions of ARs, similar air-sea fluxes could be produced. However, the spatial pattern of sea surface temperature (SST) in the southeast Indian Ocean, especially along the west coast of Australia, is different from that in the northeast Pacific because of the poleward flowing Leeuwin Current, which may cause different air-sea fluxes. This study investigates AR-associated air-sea fluxes in the southeast Indian Ocean and their relation with SST variability. The large-scale spatial pattern of latent heat flux (evaporation) associated with ARs in the southeast Indian Ocean is similar to that in the northeast Pacific. A significant difference is however found near the coastal area where relatively warm SSTs are maintained in all seasons. While AR-induced latent heat flux is close to zero around the west coast of North America where the equatorward flowing coastal current and upwelling generate relatively cold SSTs, a significant latent heat flux induced by ARs is evident along the west coast of Australia due to the relatively warm surface waters. Temporal variations of coastal air-sea fluxes associated with landfalling ARs are investigated based on the composite analysis. While the moisture advection reduces the latent heat during landfalling, the reduction of air humidity with strong winds enhances large evaporative cooling (latent heat flux) after a few days of the landfalling. A significant SST cooling along the coast is found due to the enhanced latent heat flux.more » « less
-
Abstract Increasing severity of extreme heat is a hallmark of climate change. Its impacts depend on temperature but also on moisture and solar radiation, each with distinct spatial patterns and vertical profiles. Here, we consider these variables’ combined effect on extreme heat stress, as measured by the environmental stress index, using a suite of high-resolution climate simulations for historical (1980–2005) and future (2074–2099, Representative Concentration Pathway 8.5 (RCP8.5)) periods. We find that observed extreme heat stress drops off nearly linearly with elevation above a coastal zone, at a rate that is larger in more humid regions. Future projections indicate dramatic relative increases whereby the historical top 1% summer heat stress value may occur on about 25%–50% of future summer days under the RCP8.5 scenario. Heat stress increases tend to be larger at higher latitudes and in areas of greater temperature increase, although in the southern and eastern US moisture increases are nearly as important. Imprinted on top of this dominant pattern we find secondary effects of smaller heat stress increases near ocean coastlines, notably along the Pacific coast, and larger increases in mountains, notably the Sierra Nevada and southern Appalachians. This differential warming is attributable to the greater warming of land relative to ocean, and to larger temperature increases at higher elevations outweighing larger water-vapor increases at lower elevations. All together, our results aid in furthering knowledge about drivers and characteristics that shape future extreme heat stress at scales difficult to capture in global assessments.more » « less
-
The Role of Nearshore Air‐Sea Interactions for Landfalling Atmospheric Rivers on the U.S. West CoastAbstract Research on Atmospheric Rivers (ARs) has focused primarily on AR (thermo)dynamics and hydrological impacts over land. However, the evolution and potential role of nearshore air‐sea fluxes during landfalling ARs are not well documented. Here, we examine synoptic evolutions of nearshore latent heat flux (LHF) during strong late‐winter landfalling ARs (1979–2017) using 138 overshelf buoys along the U. S. west coast. Composite evolutions show that ARs typically receive upward (absolute) LHF from the coastal ocean. LHF is small during landfall due to weak air‐sea humidity gradients but is strongest (30–50 W/m2along the coast) 1–3 days before/after landfall. During El Niño winters, southern‐coastal LHF strengthens, coincident with stronger ARs. A decomposition of LHF reveals that sea surface temperature (SST) anomalies modulated by the El Niño Southern Oscillation dominate interannual LHF variations under ARs, suggesting a potential role for nearshore SST and LHF influencing the intensity of landfalling ARs.more » « less
An official website of the United States government
