skip to main content


Title: Regional and elevational patterns of extreme heat stress change in the US
Abstract Increasing severity of extreme heat is a hallmark of climate change. Its impacts depend on temperature but also on moisture and solar radiation, each with distinct spatial patterns and vertical profiles. Here, we consider these variables’ combined effect on extreme heat stress, as measured by the environmental stress index, using a suite of high-resolution climate simulations for historical (1980–2005) and future (2074–2099, Representative Concentration Pathway 8.5 (RCP8.5)) periods. We find that observed extreme heat stress drops off nearly linearly with elevation above a coastal zone, at a rate that is larger in more humid regions. Future projections indicate dramatic relative increases whereby the historical top 1% summer heat stress value may occur on about 25%–50% of future summer days under the RCP8.5 scenario. Heat stress increases tend to be larger at higher latitudes and in areas of greater temperature increase, although in the southern and eastern US moisture increases are nearly as important. Imprinted on top of this dominant pattern we find secondary effects of smaller heat stress increases near ocean coastlines, notably along the Pacific coast, and larger increases in mountains, notably the Sierra Nevada and southern Appalachians. This differential warming is attributable to the greater warming of land relative to ocean, and to larger temperature increases at higher elevations outweighing larger water-vapor increases at lower elevations. All together, our results aid in furthering knowledge about drivers and characteristics that shape future extreme heat stress at scales difficult to capture in global assessments.  more » « less
Award ID(s):
1934383
NSF-PAR ID:
10411007
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
6
ISSN:
1748-9326
Page Range / eLocation ID:
064046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5 °C/2.0 °C warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0%–4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0%–1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.

     
    more » « less
  2. Abstract

    A land process model, Integrated Science Assessment Model, is extended to simulate contemporary soybean and maize crop yields accurately and changes in yields over the period 1901–2100 driven by environmental factors (atmospheric CO2level ([CO2]) and climate), and management factors (nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, RCP4.5‐SSP2 and RCP8.5‐SSP5; the warmer temperature drives yields lower, while rising [CO2] drives yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, particularly the increase in [CO2], and resultant changes in the phenological events due to climate change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for maize increases under RCP4.5‐SSP2, which experiences continued growth in [CO2] and higher nitrogen input rates. For soybean, yield increases at a similar rate. However, in RCP8.5‐SSP5, maize yield declines because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than RCP4.5‐SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced technologies, and stronger management practices, in addition to climate change mitigation, may be needed to intensify crop production over this century. The model also projects spatial variations in yields; notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce light interception, resulting in lower yields, particularly for soybean under RCP8.5‐SSP5.

     
    more » « less
  3. According to the Intergovernmental Panel on Climate Change (IPCC), global temperatures have risen at an alarming pace since the early 20th century and this warming has been more pronounced since the 1970s. Temperature variations are significant because of their relation with thermal comfort and public health. In this study, we characterize the impacts of increasing maximum air temperatures in Sonora, Mexico. Heat days (HDs) and heat waves (HWs) were used as indicators to investigate historical trends in extreme heat. Furthermore, HDs were represented using a generalized linear regression model during the observed period (1966–2015) to generate future scenarios related to extreme heat and subsequently compared with six downscaled general circulation models (CNRM‐CM5, CSIRO Mk3.6.0, HadGEM2‐CC, HadGEM2‐ES, IPSL‐CM5A‐LR and IPSL‐CM5A‐MR) under low and high radiative scenarios (RCP4.5 and RCP8.5). Results of this work indicate that climate stations in Sonora have exhibited increases in the number of HDs and HWs in the historical record that can be associated to physical factors such as elevation, urban land cover and the percent of annual rainfall during the summer. Statistical and model‐based projections indicate that these trends will continue in the future up to 2060, with less moderate increases and high uncertainty noted for the difference scenarios of the downscaled models. These observed and projected trends in extreme heat are important for identifying adaptation strategies in the public and environmental health sectors in Sonora.

     
    more » « less
  4. Abstract

    Species are frequently responding to contemporary climate change by shifting to higher elevations and poleward to track suitable climate space. However, depending on local conditions and species’ sensitivity, the nature of these shifts can be highly variable and difficult to predict. Here, we examine how the American pika (Ochotona princeps), a philopatric, montane lagomorph, responds to climatic gradients at three spatial scales. Using mixed‐effects modeling in an information‐theoretic approach, we evaluated a priori model suites regarding predictors of site occupancy, relative abundance, and elevational‐range retraction across 760 talus patches, nested within 64 watersheds across the Northern Rocky Mountains of North America, during 2017–2020. The top environmental predictors differed across these response metrics. Warmer temperatures in summer and winter were associated with lower occupancy, lower relative abundances, and greater elevational retraction across watersheds. Occupancy was also strongly influenced by habitat patch size, but only when combined with climate metrics such as actual evapotranspiration. Using a second analytical approach, acute heat stress and summer precipitation best explained retraction residuals (i.e., the relative extent of retraction given the original elevational range of occupancy). Despite the study domain occurring near the species’ geographic‐range center, where populations might have higher abundances and be at lower risk of climate‐related stress, 33.9% of patches showed evidence of recent extirpations. Pika‐extirpated sites averaged 1.44℃ warmer in summer than did occupied sites. Additionally, the minimum elevation of pika occupancy has retracted upslope in 69% of watersheds (mean: 281 m). Our results emphasize the nuance associated with evaluating species’ range dynamics in response to climate gradients, variability, and temperature exceedances, especially in regions where species occupy gradients of conditions that may constitute multiple range edges. Furthermore, this study highlights the importance of evaluating diverse drivers across response metrics to improve the predictive accuracy of widely used, correlative models.

     
    more » « less
  5. Abstract

    Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies.

     
    more » « less