skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large oscillatory thermal hall effect in kagome metals
Abstract The thermal Hall effect recently provided intriguing probes to the ground state of exotic quantum matters. These observations of transverse thermal Hall signals lead to the debate on the fermionic versus bosonic origins of these phenomena. The recent report of quantum oscillations (QOs) in Kitaev spin liquid points to a possible resolution. The Landau level quantization would most likely capture only the fermionic thermal transport effect. However, the QOs in the thermal Hall effect are generally hard to detect. In this work, we report the observation of a large oscillatory thermal Hall effect of correlated Kagome metals. We detect a 180-degree phase change of the oscillation and demonstrate the phase flip as an essential feature for QOs in the thermal transport properties. More importantly, the QOs in the thermal Hall channel are more profound than those in the electrical Hall channel, which strongly violates the Wiedemann–Franz (WF) law for QOs. This result presents the oscillatory thermal Hall effect as a powerful probe to the correlated quantum materials.  more » « less
Award ID(s):
2317618
PAR ID:
10525981
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong interactions and topology drive a wide variety of correlated ground states. Some of the most interesting of these ground states, such as fractional quantum Hall states and fractional Chern insulators, have fractionally charged quasiparticles. Correlations in these phases are captured by the binding of electrons and vortices into emergent particles called composite fermions. Composite fermion quasiparticles are randomly localized at high levels of disorder and may exhibit charge order when there is not too much disorder in the system. However, more complex correlations are predicted when composite fermion quasiparticles cluster into a bubble, and then these bubbles order on a lattice. Such a highly correlated ground state is termed the bubble phase of composite fermions. Here we report the observation of such a bubble phase of composite fermions, evidenced by the re-entrance of the fractional quantum Hall effect. We associate this re-entrance with a bubble phase with two composite fermion quasiparticles per bubble. Our results demonstrate the existence of a new class of strongly correlated topological phases driven by clustering and charge ordering of emergent quasiparticles. 
    more » « less
  2. Abstract Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems. 
    more » « less
  3. null (Ed.)
    The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tunable fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons. 
    more » « less
  4. Recently, the study of quantum materials through thermal characterization methods has attracted much attention. These methods, although not as widely used as electrical methods, can reveal intriguing physical properties in materials that are not detectable by electrical methods, particularly in electrical insulators. A fundamental understanding of these physical properties is critical for the development of novel applications for energy conversion and storage, quantum sensing and quantum information processing. In this review, we introduce several commonly used thermal characterization methods for quantum materials, including specific heat, thermal conductivity, thermal Hall effect, and Nernst effect measurements. Important theories for the thermal properties of quantum materials are discussed. Moreover, we introduce recent research progress on thermal measurements of quantum materials. We highlight experimental studies on probing the existence of quantum spin liquids, Berry curvature, chiral anomaly, and coupling between heat carriers. We also discuss the work on investigating the quantum phase transitions and quasi-particle hydrodynamics using thermal characterization methods. These findings have significantly advanced knowledge regarding novel physical properties in quantum materials. In addition, we provide some perspectives on further investigation of novel thermal properties in quantum materials. 
    more » « less
  5. We report complex magnetotransport patterns of the ν = 1 integer quantum Hall state in a GaAs/AlGaAs sample from the newest generation with a record high electron mobility. The reentrant integer quantum Hall effect in the flanks of the ν = 1 plateau indicates the formation of the integer quantum Hall Wigner solid, a collective insulator. Moreover, at a fixed filling factor, the longitudinal resistance versus temperature in the region of the integer quantum Hall Wigner solid exhibits a sharp peak. Such sharp peaks in the longitudinal resistance versus temperature so far were only detected for bubble phases forming in high Landau levels but were absent in the region of the Anderson insulator. We suggest that in samples of sufficiently low disorder, sharp peaks in the longitudinal resistance versus temperature traces are universal transport signatures of all isotropic electron solids that form in the flanks of integer quantum Hall plateaus. We discuss possible origins of these sharp resistance peaks and we draw a stability diagram for the insulating phases in the ν-T phase space. 
    more » « less