Abstract Is AI disrupting jobs and creating unemployment? This question has stirred public concern for job stability and motivated studies assessing occupations’ automation risk. These studies used readily available employment and wage statistics to quantify occupational changes for employed workers. However, they did not directly examine unemployment dynamics primarily due to the lack of data across occupations, geography, and time. Here, we overcome this barrier using monthly occupation-level unemployment data from each US state’s unemployment insurance office from 2010 to 2020 to assess AI exposure models, job separations, and unemployment through a new measure called unemployment risk. We demonstrate that standard employment statistics are inadequate proxies for occupations’ unemployment risk and find that individual AI exposure models are poor predictors of occupations’ unemployment risk states’ total unemployment rates, and states’ total job separation rates. However, an ensemble approach exhibits substantial predictive power, accounting for an additional 18% of variation in unemployment risk across occupations, states, and time compared to a baseline model that controls for education, occupations’ skills, seasonality, and regional effects. These results suggest that competing models may capture different aspects of AI exposure and that automation shapes US unemployment. Our results demonstrate the power of occupation-specific job disruption data and that efforts using only one AI exposure score will misrepresent AI’s impact on the future of work.
more »
« less
Assessing the impact of technological change on similar occupations: Implications for employment alternatives
BackgroundThe fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations. MethodWe first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes. ResultsThe results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years. ConclusionOur results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities.
more »
« less
- Award ID(s):
- 2041215
- PAR ID:
- 10526080
- Editor(s):
- Amavilah, Voxi Heinrich
- Publisher / Repository:
- Plos
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0291428
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Automation continues to be a disruptive force in the workforce. In particular, new automated technologies are projected to replace many mid-skill jobs, potentially displacing millions of workers. Career planning agencies and other organizations can help support workers if they are able to effectively identify optimal transition occupations for displaced workers. We drew upon the 24.2 Occupational Information Network (O*NET) Database to conduct two related studies that identify alternate occupations for truck drivers, who are at risk of job loss due to the adoption of autonomous vehicles. In Study 1, we statistically compared the jobs that we identified based on different search methods using O*NET classifications based on their similarity to the knowledge, skills, values, and interests held by truck drivers. In Study 2, we conducted a survey of truck drivers to evaluate their perceptions of the occupations identified as objectively similar to their occupation. Results indicate that optimal transition occupations may be identified by searching for occupations that share skills as well as the same work activities/industry as a given occupation. These findings hold further implications for career planning organizations and policymakers to ease workforce disruption due to automation.more » « less
-
Purpose This paper aims to examine transferable skills and viable career transition pathways for hospitality and tourism workers. Future career prospects are discussed, along with the importance of reskilling for low-wage hospitality workers. Design/methodology/approach A network analysis is conducted to model skill relationships between the hospitality industry and other industries such as health-care and information technology. Multiple data are used in the analysis, including data from the US Department of Labor Occupational Information Network (O*NET), wage data from the Bureau of Labor Statistics and job computerization data (Frey and Osborne, 2017). Findings Although hospitality workers have lower than average skills scores when compared to workers from other career clusters included in the analysis, they possess essential soft skills that are valuable in other industries. Therefore, improving hospitality workers’ existing soft skills may help them enhance their cross-sector mobility, which may allow them to obtain jobs with a lower likelihood of computerization. Practical implications The findings shed light on workforce development theories and practice in the hospitality industry by quantitatively analyzing cross-sector skill correlations. Sharpening transferable soft skills will be essential to enhancing hospitality workers’ career development opportunities. Originality/value To the best of the authors’ knowledge, this is the first study that specifically examines the skill taxonomy for the hospitality industry and identifies its connection with other in-demand career clusters.more » « less
-
Abstract BackgroundMore details about human movement patterns are needed to evaluate relationships between daily travel and malaria risk at finer scales. A multiagent mobility simulation model was built to simulate the movements of villagers between home and their workplaces in 2 townships in Myanmar. MethodsAn agent-based model (ABM) was built to simulate daily travel to and from work based on responses to a travel survey. Key elements for the ABM were land cover, travel time, travel mode, occupation, malaria prevalence, and a detailed road network. Most visited network segments for different occupations and for malaria-positive cases were extracted and compared. Data from a separate survey were used to validate the simulation. ResultsMobility characteristics for different occupation groups showed that while certain patterns were shared among some groups, there were also patterns that were unique to an occupation group. Forest workers were estimated to be the most mobile occupation group, and also had the highest potential malaria exposure associated with their daily travel in Ann Township. In Singu Township, forest workers were not the most mobile group; however, they were estimated to visit regions that had higher prevalence of malaria infection over other occupation groups. ConclusionsUsing an ABM to simulate daily travel generated mobility patterns for different occupation groups. These spatial patterns varied by occupation. Our simulation identified occupations at a higher risk of being exposed to malaria and where these exposures were more likely to occur.more » « less
-
Occupational identity concerns the self-image of an individual’s affinities and socioeconomic class, and directs how a person should behave in certain ways. Understanding the establishment of occupational identity is important to studywork-related behaviors. However, large-scale quantitative studies of occupational identity are difficult to perform due to its indirect observable nature. But profile biographies on social media contain concise yet rich descriptions about self- identity. Analysis of these self-descriptions provides powerful insights concerning how people see themselves and how they change over time.In this paper, we present and analyze a longitudinal corpus recording the self-authored public biographies of 51.18 million Twitter users as they evolve over a six-year period from 2015-2021. In particular, we investigate the social approval (e.g., job prestige and salary) effects in how people self-disclose occupational identities, quantifying over-represented occupations as well as the occupational transitions w.r.t. job prestige over time. We show that self-reported jobs and job transitions are biased toward more prestigious occupations. We also present an intriguing case study about how self-reported jobs changed amid COVID-19 and the subsequent Great Resignation trend with the latest full year data in 2022. These results demonstrate that social media biographies are a rich source of data for quantitative social science studies, allowing unobtrusive observation of the intersectionsand transitions obtained in online self-presentation.more » « less
An official website of the United States government

