The Saharan Air Layer (SAL) is a hot, dry, and dust‐laden feature that advects large concentrations of dust across the Atlantic annually to destination regions in the Americas and Caribbean. However, recent work has suggested the SAL may be a contributing factor to high‐impact drought in the Caribbean basin. While the SAL's characteristic dust loadings have been the focus of much previous research, fewer efforts have holistically engaged the co‐evolution of the dust plume, its associated convective environment, and resultant rainfall in Caribbean islands. This study employs a self‐organizing map (SOM) classification to identify the common trans‐Atlantic dust transport typologies associated with the SAL during June and July 1981–2020. Using the column‐integrated dust flux, termed integrated dust transport (IDT), from MERRA‐2 reanalysis as a SAL proxy, the SOM resolved two common patterns which resembled trans‐Atlantic SAL outbreaks. During these events, the convective environment associated with the SAL, as inferred by the Gálvez‐Davison Index, becomes less conducive to precipitation as the SAL migrates further away from the west African coast. Simultaneously, days with IDT patterns grouped to the SAL outbreak typologies demonstrate island‐wide negative precipitation anomalies in Puerto Rico. The SOM's most distinctive SAL outbreak pattern has experienced a statistically significant increase during the 40‐year study period, becoming roughly 10% more frequent over that time. These results are relevant for both climate scientists and water managers wishing to better anticipate Caribbean droughts on both the long and short terms.
more »
« less
Recurring Trans-Atlantic Dust Pathways during June-July
These data represent a self-organizing map (SOM) classification of all trans-Atlantic integrated dust fluxes (IDT) between June-July 1981-2020 as presented in: Miller, P. W., and C. Ramseyer, In press: The relationship between the Saharan Air Layer, convective environmental conditions, and precipitation in Puerto Rico. Journal of Geophysical Research: Atmospheres. Each daily IDT field is paired to one of 12 discrete pathways in idt_bmus_junjul.csv. The mean composite IDT over the tropical North Atlantic for each of these 12 patterns, as well as the mean composite Galvez-Davison Index (ERS_idt_node_gdi_1981_2020_junjul.nc) and mean composite precipitation over Puerto Rico (ERS_idt_node_prcp_1981_2020_junjul.nc) for the same node-date pairings are also provided. See the above-referenced manuscript for more details.
more »
« less
- Award ID(s):
- 2236655
- PAR ID:
- 10526219
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract In groundwater-limited settings, such as Puerto Rico and other Caribbean islands, societal, ecological, and agricultural water needs depend on regular rainfall. Though long-range numerical weather predication models explicitly predict precipitation, such quantitative precipitation forecasts (QPF) critically failed to detect the historic 2015 Caribbean drought. Consequently, this work examines the feasibility of developing a drought early warning tool using the Gálvez–Davison index (GDI), a tropical convective potential index, derived from the Climate Forecast System, version 2 (CFSv2). Drought forecasts are focused on Puerto Rico’s early rainfall season (ERS; April–July), which is susceptible to intrusions of strongly stable Saharan air and represents the largest source of hydroclimatic variability for the island. A fully coupled atmosphere–ocean–land model, the CFSv2 can plausibly detect the transatlantic advection of low-GDI Saharan air with multimonth lead times. The mean ERS GDI is calculated from semidaily CFSv2 forecasts beginning 1 January of each year between 2012 and 2018 and monitored as the initialization approaches 1 April. The CFSv2 demonstrates a broad region of statistically significant correlations with observed GDI across the eastern Caribbean up to 30 days prior to the ERS. During 2015, the CFSv2 forecast a low-GDI tongue extending across the Atlantic toward the Caribbean with 60–90 days lead time and placed Puerto Rico’s 2015 ERS beneath the 15th percentile of all 1982–2018 ERS forecasts with up to 30 days lead time. A preliminary GDI-based QPF tool tested herein is a statistically significant improvement over climatology for the driest years.more » « less
-
FAST deployed from 8-12 January 2020, documenting the performance of 61 structures located in six different cities along the southwestern coast of Puerto Rico between the cities of Ponce and Mayagüez. A variety of structure types are surveyed, including residential building structures and bridge infrastructures. FAST collected perishable data through the Fulcrum app by completing damage assessment forms, recording high-resolution overall and detailed images of observed damages, and notes summarizing key observations. Fieldwork data collection is conducted according to the StEER’s FAST handbook.This project encompasses the products of StEER's Level 2 response to the Puerto Rico Earthquake from December 2019 to January 2020. The main event, a Mw 6.4 quake, occurred on January 7th, accompanied by numerous aftershocks. The governor reported one casualty and eight injuries, declaring a State of Emergency. The earthquakes damaged 10,000+ structures, collapsing 80, predominantly residential units. Infrastructure, bridges, and roads were also affected, leaving two-thirds of the island without power. Over 8,000 people were displaced to shelters, while 63,000 received assistance, with FEMA handling over 13,852 aid requests. In response, the StEER conducted a post-earthquake performance assessment from 8-12 January 2020, documenting the performance of 60 structures located in six different cities along the southwestern coast of Puerto Rico. The field data collection focused on acquiring high-resolution photographs and notes on structural performance necessary to construct detailed case studies of each structure.more » « less
-
Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.more » « less
-
null (Ed.)In 2009, the University of Alabama-Huntsville configured their GOES satellited-based solar radiation product to include Puerto Rico, the US Virgin Islands (USVI), Dominican Republic, Haiti, Jamaica, and Cuba. The half-hourly and daily integrated data are available at 1 km resolution for Puerto Rico and the USVI and 2 km for Hispaniola, Jamaica, and Cuba. These data made it possible to implement estimates of satellite radiation-based evapotranspiration methods on all of the islands. The use of the solar radiation data in combination with estimates of other climate parameters facilitated the development of a water and energy balance algorithm for Puerto Rico. The purpose of this paper is to describe the theoretical background and technical approach for estimating the components of the daily water and energy balance. The operational water and energy balance model is the first of its kind in Puerto Rico. Model validation results are presented for reference and actual evapotranspiration, soil moisture, and streamflow. Mean errors for all analyses were less than 7%. The water and energy balance model results can benefit such diverse fields as agriculture, ecology, coastal water management, human health, renewable energy development, water resources, drought monitoring, and disaster and emergency management. This research represents a preliminary step in developing a suite of gridded hydro-climate products for the Caribbean Region.more » « less
An official website of the United States government
