skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contributions of site- and sex-specific LTPs to everyday memory
Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.  more » « less
Award ID(s):
1941216
PAR ID:
10526237
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society Pubmishing
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
379
Issue:
1906
ISSN:
0962-8436
Subject(s) / Keyword(s):
Long-term potentiation synaptic plasticity dentate gyrus CA1 learning episodic memory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories. 
    more » « less
  2. Abstract Perisynaptic astroglia provide critical molecular and structural support to regulate synaptic transmission and plasticity in the nanodomain of the axon-spine interface. Three-dimensional reconstruction from serial section electron microscopy (3DEM) was used to investigate relationships between perisynaptic astroglia and dendritic spine synapses undergoing plasticity in the hippocampus of awake adult male rats. Delta-burst stimulation (DBS) of the medial perforant pathway induced long-term potentiation (LTP) in the middle molecular layer and concurrent long-term depression (cLTD) in the outer molecular layer of the dentate gyrus. The contralateral hippocampus received baseline stimulation as a within-animal control. Brains were obtained 30 minutes or 2 hours after DBS onset. An automated 3DEM pipeline was developed to enable unbiased quantification of astroglial coverage at the perimeter of the axon-spine interface. Under all conditions, >85% of synapses had perisynaptic astroglia processes within 120 nm of some portion of the perimeter. LTP broadened the distribution of spine sizes while reducing the presence and proximity of perisynaptic astroglia near the axon-spine interface of large spines. In contrast, cLTD transiently reduced the length of the axon-spine interface perimeter without substantially altering astroglial apposition. The postsynaptic density was discovered to be displaced from the center of the axon-spine interface, with this offset increasing during LTP and decreasing during cLTD. Astroglial access to the postsynaptic density was diminished during LTP and enhanced during cLTD, in parallel with changes in spine size. Thus, access of perisynaptic astroglia to synapses is dynamically modulated during LTP and cLTD alongside synaptic remodeling. Significance StatementPerisynaptic astroglia provide critical molecular and structural regulation of synaptic plasticity underlying learning and memory. The hippocampal dentate gyrus, a brain region crucial for learning and memory, was found to have perisynaptic astroglia at the axon-spine interface of >85% of excitatory synapses measured. Long-term potentiation triggered the retraction of perisynaptic astroglia processes selectively from large synapses. This retraction decreased access of perisynaptic astroglia to the postsynaptic density, which was discovered to be located off-center in the axon-spine interface. Concurrent long-term depression temporarily (< 2 h) decreased spine perimeter and thus increased access of synapses to perisynaptic astroglia. These findings provide new insights into how the structural dynamics of spines and synapses shape access to perisynaptic astroglia. 
    more » « less
  3. Abstract Analysis of long‐term potentiation (LTP) provides a powerful window into cellular mechanisms of learning and memory. Prior work shows late LTP (L‐LTP), lasting >3 hr, occurs abruptly at postnatal day 12 (P12) in thestratum radiatumof rat hippocampal area CA1. The goal here was to determine the developmental profile of synaptic plasticity leading to L‐LTP in the mouse hippocampus. Two mouse strains and two mutations known to affect synaptic plasticity were chosen: C57BL/6J andFmr1−/yon the C57BL/6J background, and 129SVE andHevin−/−(Sparcl1−/−) on the 129SVE background. Like rats, hippocampal slices from all of the mice showed test pulse‐induced depression early during development that was gradually resolved with maturation by 5 weeks. All the mouse strains showed a gradual progression between P10‐P35 in the expression of short‐term potentiation (STP), lasting ≤1 hr. In the 129SVE mice, L‐LTP onset (>25% of slices) occurred by 3 weeks, reliable L‐LTP (>50% slices) was achieved by 4 weeks, andHevin−/−advanced this profile by 1 week. In the C57BL/6J mice, L‐LTP onset occurred significantly later, over 3–4 weeks, and reliability was not achieved until 5 weeks. Although some of theFmr1−/ymice showed L‐LTP before 3 weeks, reliable L‐LTP also was not achieved until 5 weeks. L‐LTP onset was not advanced in any of the mouse genotypes by multiple bouts of theta‐burst stimulation at 90 or 180 min intervals. These findings show important species differences in the onset of STP and L‐LTP, which occur at the same age in rats but are sequentially acquired in mice. 
    more » « less
  4. Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP. 
    more » « less
  5. Abstract Long-term potentiation (LTP) induces presynaptic bouton enlargement and a reduction in the number of synaptic vesicles. To understand the relationship between these events, we performed 3D analysis of serial section electron micrographs in rat hippocampal area CA1, 2 hours after LTP induction. We observed a high vesicle packing density in control boutons, contrasting with a lower density in most LTP boutons. Notably, the summed membrane area of the vesicles lost in low-density LTP boutons is comparable to the surface membrane required for the observed bouton enlargement when compared to high-density control boutons. These novel findings suggest that presynaptic vesicle density provides a new structural indicator of LTP that supports a local mechanism of bouton enlargement. 
    more » « less