skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural SSS: Lightweight Object Appearance Representation
Abstract We present a method for capturing the BSSRDF (bidirectional scattering‐surface reflectance distribution function) of arbitrary geometry with a neural network. We demonstrate how a compact neural network can represent the full 8‐dimensional light transport within an object including heterogeneous scattering. We develop an efficient rendering method using importance sampling that is able to render complex translucent objects under arbitrary lighting. Our method can also leverage the common planar half‐space assumption, which allows it to represent one BSSRDF model that can be used across a variety of geometries. Our results demonstrate that we can render heterogeneous translucent objects under arbitrary lighting and obtain results that match the reference rendered using volumetric path tracing.  more » « less
Award ID(s):
2212085
PAR ID:
10526270
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
43
Issue:
4
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Monte Carlo rendering of translucent objects with heterogeneous scattering properties is often expensive both in terms of memory and computation. If the scattering properties are described by a 3D texture, memory consumption is high. If we do path tracing and use a high dynamic range lighting environment, the computational cost of the rendering can easily become significant. We propose a compact and efficient neural method for representing and rendering the appearance of heterogeneous translucent objects. Instead of assuming only surface variation of optical properties, our method represents the appearance of a full object taking its geometry and volumetric heterogeneities into account. This is similar to a neural radiance field, but our representation works for an arbitrary distant lighting environment. In a sense, we present a version of neural precomputed radiance transfer that captures relighting of heterogeneous translucent objects. We use a multi‐layer perceptron (MLP) with skip connections to represent the appearance of an object as a function of spatial position, direction of observation, and direction of incidence. The latter is considered a directional light incident across the entire non‐self‐shadowed part of the object. We demonstrate the ability of our method to compactly store highly complex materials while having high accuracy when comparing to reference images of the represented object in unseen lighting environments. As compared with path tracing of a heterogeneous light scattering volume behind a refractive interface, our method more easily enables importance sampling of the directions of incidence and can be integrated into existing rendering frameworks while achieving interactive frame rates. 
    more » « less
  2. Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness of our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection. 
    more » « less
  3. Abstract We present a deep learning based solution for separating the direct and global light transport components from a single photograph captured under high frequency structured lighting with a co‐axial projector‐camera setup. We employ an architecture with one encoder and two decoders that shares information between the encoder and the decoders, as well as between both decoders to ensure a consistent decomposition between both light transport components. Furthermore, our deep learning separation approach does not require binary structured illumination, allowing us to utilize the full resolution capabilities of the projector. Consequently, our deep separation network is able to achieve high fidelity decompositions for lighting frequency sensitive features such as subsurface scattering and specular reflections. We evaluate and demonstrate our direct and global separation method on a wide variety of synthetic and captured scenes. 
    more » « less
  4. Abstract This paper introduces a new method using deep neural networks for the interactive digital transformation and simulation of n-bar planar linkages, which consist of revolute and prismatic joints, based on hand-drawn sketches. Instead of relying solely on computer vision, our approach combines topological knowledge of linkage mechanisms with the outcomes of a convolutional deep neural network. This creates a framework for recognizing hand-drawn sketches. We generate a dataset of synthetic images that resemble hand-drawn sketches of linkage mechanisms. Next, we fine-tune a state-of-the-art deep neural network to detect discrete objects using building blocks that represent joints and links in various positions, sizes, and orientations within these sketches. We then conduct a topological analysis on the detected objects to construct a kinematic model of the sketched mechanisms. The results demonstrate the effectiveness of our algorithm in handling hand-drawn sketches and converting them into digital representations. This has practical implications for improving communication, analysis, organization, and classification of planar mechanisms. 
    more » « less
  5. Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    Recognizing the model of a vehicle in natural scene images is an important and challenging task for real-life applications. Current methods perform well under controlled conditions, such as frontal and horizontal view-angles or under optimal lighting conditions. Nevertheless, their performance decreases significantly in an unconstrained environment, that may include extreme darkness or over illuminated conditions. Other challenges to recognition systems include input images displaying very low visual quality or considerably low exposure levels. This paper strives to improve vehicle model recognition accuracy in dark scenes by using a deep neural network model. To boost the recognition performance of vehicle models, the approach performs joint enhancement and localization of vehicles for non-uniform-lighting conditions. Experimental results on several public datasets demonstrate the generality and robustness of our framework. It improves vehicle detection rate under poor lighting conditions, localizes objects of interest, and yields better vehicle model recognition accuracy on low-quality input image data. Grants: This work is supported by the US Department of Transportation, Federal Highway Administration (FHWA), grant contract: 693JJ320C000023 Keywords—Image enhancement, vehicle model and 
    more » « less