Abstract Monte Carlo rendering of translucent objects with heterogeneous scattering properties is often expensive both in terms of memory and computation. If the scattering properties are described by a 3D texture, memory consumption is high. If we do path tracing and use a high dynamic range lighting environment, the computational cost of the rendering can easily become significant. We propose a compact and efficient neural method for representing and rendering the appearance of heterogeneous translucent objects. Instead of assuming only surface variation of optical properties, our method represents the appearance of a full object taking its geometry and volumetric heterogeneities into account. This is similar to a neural radiance field, but our representation works for an arbitrary distant lighting environment. In a sense, we present a version of neural precomputed radiance transfer that captures relighting of heterogeneous translucent objects. We use a multi‐layer perceptron (MLP) with skip connections to represent the appearance of an object as a function of spatial position, direction of observation, and direction of incidence. The latter is considered a directional light incident across the entire non‐self‐shadowed part of the object. We demonstrate the ability of our method to compactly store highly complex materials while having high accuracy when comparing to reference images of the represented object in unseen lighting environments. As compared with path tracing of a heterogeneous light scattering volume behind a refractive interface, our method more easily enables importance sampling of the directions of incidence and can be integrated into existing rendering frameworks while achieving interactive frame rates.
more »
« less
Reconstructing Translucent Objects using Differentiable Rendering
Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness of our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection.
more »
« less
- Award ID(s):
- 1900783
- PAR ID:
- 10377837
- Date Published:
- Journal Name:
- SIGGRAPH '22: ACM SIGGRAPH 2022 Conference Proceedings
- Volume:
- 38
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a method for capturing the BSSRDF (bidirectional scattering‐surface reflectance distribution function) of arbitrary geometry with a neural network. We demonstrate how a compact neural network can represent the full 8‐dimensional light transport within an object including heterogeneous scattering. We develop an efficient rendering method using importance sampling that is able to render complex translucent objects under arbitrary lighting. Our method can also leverage the common planar half‐space assumption, which allows it to represent one BSSRDF model that can be used across a variety of geometries. Our results demonstrate that we can render heterogeneous translucent objects under arbitrary lighting and obtain results that match the reference rendered using volumetric path tracing.more » « less
-
The continued advancements of time-of-flight imaging devices have enabled new imaging pipelines with numerous applications. Consequently, several forward rendering techniques capable of accurately and efficiently simulating these devices have been introduced. However, general-purpose differentiable rendering techniques that estimate derivatives of time-of-flight images are still lacking. In this paper, we introduce a new theory of differentiable time-gated rendering that enjoys the generality of differentiating with respect to arbitrary scene parameters. Our theory also allows the design of advanced Monte Carlo estimators capable of handling cameras with near-delta or discontinuous time gates. We validate our theory by comparing derivatives generated with our technique and finite differences. Further, we demonstrate the usefulness of our technique using a few proof-of-concept inverse-rendering examples that simulate several time-of-flight imaging scenarios.more » « less
-
Abstract Differentiable rendering of translucent objects with respect to their shapes has been a long‐standing problem. State‐of‐the‐art methods require detecting object silhouettes or specifying change rates inside translucent objects—both of which can be expensive for translucent objects with complex shapes. In this paper, we address this problem for translucent objects with no refractive or reflective boundaries. By reparameterizing interior components of differential path integrals, our new formulation does not require change rates to be specified in the interior of objects. Further, we introduce new Monte Carlo estimators based on this formulation that do not require explicit detection of object silhouettes.more » « less
-
Physics-based differentiable rendering is becoming increasingly crucial for tasks in inverse rendering and machine learning pipelines. To address discontinuities caused by geometric boundaries and occlusion, two classes of methods have been proposed: 1) the edge-sampling methods that directly sample light paths at the scene discontinuity boundaries, which require nontrivial data structures and precomputation to select the edges, and 2) the reparameterization methods that avoid discontinuity sampling but are currently limited to hemispherical integrals and unidirectional path tracing. We introduce a new mathematical formulation that enjoys the benefits of both classes of methods. Unlike previous reparameterization work that focused on hemispherical integral, we derive the reparameterization in the path space. As a result, to estimate derivatives using our formulation, we can apply advanced Monte Carlo rendering methods, such as bidirectional path tracing, while avoiding explicit sampling of discontinuity boundaries. We show differentiable rendering and inverse rendering results to demonstrate the effectiveness of our method.more » « less
An official website of the United States government

