Abstract MXenes, a new class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted much attention due to their outstanding properties. Here, we report the broadband spatial self‐phase modulation of Ti2CTxMXene nanosheets dispersed in deionized water in the visible to near‐infrared regime, highlighting the broadband nonlinear optical (NLO) response of Ti2CTxMXene. Using ultrafast pulsed laser excitation, the nonlinear refractive indexn2and the third‐order nonlinear susceptibilityof Ti2CTxMXene were measured to be ∼10−13m2/W and ∼ 10−10esu, respectively. Leveraging the large optical nonlinearity of Ti2CTxMXene, an all‐optical modulator in the visible regime was fabricated based on the spatial cross‐phase modulation effect. This work suggests that 2D MXenes are ideal broadband NLO materials with excellent prospects in NLO applications. image
more »
« less
Optical Properties of Electrochemically Gated La 1− x Sr x CoO 3−δ as a Topotactic Phase‐Change Material
Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.
more »
« less
- Award ID(s):
- 2011401
- PAR ID:
- 10415091
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 11
- Issue:
- 16
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.more » « less
-
ABSTRACT: Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolytegate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3−δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal−insulator−metal and ferromagnet−nonferromagnet−ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices. KEYWORDS: electrolyte gating, magnetoionics, complex oxides, perovskite−brownmillerite transformation, hysteresis, reversibilitymore » « less
-
Abstract Dynamic control of patterned properties in perovskite oxide films can enable new architectures for electronic, magnetic, and optical devices. In this study, it is shown that SrFeO3‐δ/SrFeO2F laterally‐heterostructured films enable voltage‐controlled tunable and reversible metal‐insulator patterned properties using room‐temperature ion gel gating. Specifically, SrFeO3‐δfilm regions can be toggled between insulating HxSrFeO2.5and metallic SrFeO3by electrochemical redox, while SrFeO2F regions remain robustly insulating and are unaffected by ion gel gating. Various gating architectures are also compared and establish the advantages of employing a conductive substrate as the contacting electrode, as opposed to at the film surface, thereby achieving complete and reversible reduction and oxidation among SrFeO3‐δ, HxSrFeO2.5, and SrFeO3. This approach to voltage‐modulated patterned electronic, optical, and magnetic properties should be broadly applicable to oxide materials amenable to fluoridation, and potentially other forms of anion substitution.more » « less
-
Abstract Polarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3(X = S, Se) family, BaTiSe3are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with theP31cspace group, which is a superstructure of the earlier reportedP63/mmcstructure. The crystal structure of BaTiSe3features antiparallelc‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E⊥c) and extraordinary (E‖c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn∼ 0.9, BaTiSe3emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging.more » « less