skip to main content


Title: SpectAcLE: An Improved Method for Modeling Light Echo Spectra
Abstract

Light echoes give us a unique perspective on the nature of supernovae and nonterminal stellar explosions. Spectroscopy of light echoes can reveal details on the kinematics of the ejecta, probe asymmetry, and reveal details of ejecta interaction with circumstellar matter, thus expanding our understanding of these transient events. However, the spectral features arise from a complex interplay between the source photons, the reflecting dust geometry, and the instrumental setup and observing conditions. In this work, we present an improved method for modeling these effects in light echo spectra, one that relaxes the simplifying assumption of a light-curve-weighted sum, and instead estimates the true relative contribution of each phase of a transient event to the observed spectrum. We discuss our logic, the gains we obtain over light echo analysis methods used in the past, and prospects for further improvements. Lastly, we show how the new method improves our analysis of echoes from Tycho’s supernova (SN 1572) as an example.

 
more » « less
Award ID(s):
1814993
PAR ID:
10526297
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 119
Size(s):
Article No. 119
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Light passing near a black hole can follow multiple paths from an emission source to an observer due to strong gravitational lensing. Photons following different paths take different amounts of time to reach the observer, which produces an echo signature in the image. The characteristic echo delay is determined primarily by the mass of the black hole, but it is also influenced by the black hole spin and inclination to the observer. In the Kerr geometry, echo images are demagnified, rotated, and sheared copies of the direct image and lie within a restricted region of the image. Echo images have exponentially suppressed flux, and temporal correlations within the flow make it challenging to directly detect light echoes from the total light curve. In this Letter, we propose a novel method to search for light echoes by correlating the total light curve with the interferometric signal at high spatial frequencies, which is a proxy for indirect emission. We explore the viability of our method using numerical general relativistic magnetohydrodynamic simulations of a near-face-on accretion system scaled to M87-like parameters. We demonstrate that our method can be used to directly infer the echo delay period in simulated data. An echo detection would be clear evidence that we have captured photons that have circled the black hole, and a high-fidelity echo measurement would provide an independent measure of fundamental black hole parameters. Our results suggest that detecting echoes may be achievable through interferometric observations with a modest space-based very long baseline interferometry mission.

     
    more » « less
  2. Abstract

    Accurate distance determination to astrophysical objects is essential for the understanding of their intrinsic brightness and size. The distance to SN 1987A has been previously measured by the expanding photosphere method and by using the angular size of the circumstellar rings with absolute sizes derived from light curves of narrow UV emission lines, with reported distances ranging from 46.77 to 55 kpc. In this study, we independently determined the distance to SN 1987A using photometry and imaging polarimetry observations of AT 2019xis, a light echo of SN 1987A, by adopting a radiative transfer model of the light echo developed in Ding et al. We obtained distances to SN 1987A in the range from 49.09 ± 2.16 kpc to 59.39 ± 3.27 kpc, depending on the interstellar polarization and extinction corrections, which are consistent with the literature values. This study demonstrates the potential of using light echoes as a tool for distance determination to astrophysical objects in the Milky Way, up to kiloparsec level scales.

     
    more » « less
  3. Abstract

    High‐power large‐aperture radar instruments are capable of detecting thousands of meteor head echoes within hours of observation, and manually identifying every head echo is prohibitively time‐consuming. Previous work has demonstrated that convolutional neural networks (CNNs) accurately detect head echoes, but training a CNN requires thousands of head echo examples manually identified at the same facility and with similar experiment parameters. Since pre‐labeled data is often unavailable, a method is developed to simulate head echo observations at any given frequency and pulse code. Real instances of radar clutter, noise, or ionospheric phenomena such as the equatorial electrojet are additively combined with synthetic head echo examples. This enables the CNN to differentiate between head echoes and other phenomena. CNNs are trained using tens of thousands of simulated head echoes at each of three radar facilities, where concurrent meteor observations were performed in October 2019. Each CNN is tested on a subset of actual data containing hundreds of head echoes, and demonstrates greater than 97% classification accuracy at each facility. The CNNs are capable of identifying a comprehensive set of head echoes, with over 70% sensitivity at all three facilities, including when the equatorial electrojet is present. The CNN demonstrates greater sensitivity to head echoes with higher signal strength, but still detects more than half of head echoes with maximum signal strength below 20 dB that would likely be missed during manual detection. These results demonstrate the ability of the synthetic data approach to train a machine learning algorithm to detect head echoes.

     
    more » « less
  4. Abstract

    Understanding the details ofr-process nucleosynthesis in binary neutron star merger (BNSM) ejecta is key to interpreting kilonova observations and identifying the role of BNSMs in the origin of heavy elements. We present a self-consistent, two-dimensional, ray-by-ray radiation-hydrodynamic evolution of BNSM ejecta with an online nuclear network (NN) up to a timescale of days. For the first time, an initial numerical relativity ejecta profile composed of the dynamical component and spiral-wave and disk winds is evolved including detailedr-process reactions and nuclear heating effects. A simple model for the jet energy deposition is also included. Our simulation highlights that the common approach of relating in postprocessing the final nucleosynthesis yields to the initial thermodynamic profile of the ejecta can lead to inaccurate predictions. Moreover, we find that neglecting the details of the radiation-hydrodynamic evolution of the ejecta in nuclear calculations can introduce deviations of up to 1 order of magnitude in the final abundances of several elements, including very light and secondr-process peak elements. The presence of a jet affects element production only in the innermost part of the polar ejecta, and it does not alter the global nucleosynthesis results. Overall, our analysis shows that employing an online NN improves the reliability of nucleosynthesis and kilonova light-curve predictions.

     
    more » « less
  5. Abstract

    The dynamics and spectral characteristics of supernova ejecta reveal details of the supernova energetics, explosive nucleosynthesis, and evolution of the progenitor. However, in practice, this important diagnostic information is only derived from CCD-resolution X-ray spectra of shock-heated material. If the spectra were to be observed at higher resolution, then important clues to the explosion energetics would be obvious through measurements of bulk Doppler motions and turbulence in the ejecta. Likewise, the unshocked ejecta in supernovae and young remnants are responsible for obscuring the emission from ejecta on the back side of the remnant. In light of these important effects, we present line-of-sight spectral maps of core-collapse supernova remnant models. We explore the bulk Doppler broadening of spectral lines, including line-of-sight effects. We also explore the time-dependent absorption from both shocked and unshocked ejecta. Finally, we discuss how future X-ray missions such as XRISM and Athena will be able to resolve these effects in nearby and extragalactic supernovae and their remnants.

     
    more » « less