The search for extraterrestrial intelligence (SETI) Ellipsoid is a geometric method for prioritizing technosignature observations based on the strategy of receiving signals synchronized to conspicuous astronomical events. Precise distances to nearby stars from Gaia makes constraining Ellipsoid crossing times possible. Here we explore the utility of using the Gaia Catalog of Nearby Stars to select targets on the SN 1987A SETI Ellipsoid, as well as the Ellipsoids defined by 278 classical novae. Less than 8% of stars within the 100 pc sample are inside the SN 1987A SETI Ellipsoid, meaning the vast majority of nearby stars are still viable targets for monitoring over time. We find an average of 734 stars per year within the 100 pc volume will intersect the Ellipsoid from SN 1987A, with ∼10% of those having distance uncertainties from Gaia better than 0.1 lyr.
more »
« less
An Independent Determination of the Distance to Supernova SN 1987A by Means of the Light Echo AT 2019xis
Abstract Accurate distance determination to astrophysical objects is essential for the understanding of their intrinsic brightness and size. The distance to SN 1987A has been previously measured by the expanding photosphere method and by using the angular size of the circumstellar rings with absolute sizes derived from light curves of narrow UV emission lines, with reported distances ranging from 46.77 to 55 kpc. In this study, we independently determined the distance to SN 1987A using photometry and imaging polarimetry observations of AT 2019xis, a light echo of SN 1987A, by adopting a radiative transfer model of the light echo developed in Ding et al. We obtained distances to SN 1987A in the range from 49.09 ± 2.16 kpc to 59.39 ± 3.27 kpc, depending on the interstellar polarization and extinction corrections, which are consistent with the literature values. This study demonstrates the potential of using light echoes as a tool for distance determination to astrophysical objects in the Milky Way, up to kiloparsec level scales.
more »
« less
- Award ID(s):
- 1817099
- PAR ID:
- 10471365
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 949
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Light echoes occur when light from a luminous transient is scattered by dust back into our line of sight with a time delay due to the extra propagation distance. We introduce a novel approach to estimating the distance to a source by combining light echoes with recent three-dimensional dust maps. We identify light echoes from the historical supernovae Cassiopeia A and SN 1572 (Tycho) in nearly a decade of imaging from the All-Sky Automated Survey for Supernovae (ASAS-SN). Using these light echoes, we find distances of kpc and kpc to Cas A and Tycho, respectively, which are generally consistent with previous estimates but are more precise. These distance uncertainties are primarily dominated by the low distance resolution of the 3D dust maps, which will likely improve in the future. The candidate single degenerate explosion donor stars B and G in Tycho are clearly foreground stars. Finally, the inferred reddening towards each SN agrees well with the intervening column density estimates from X-ray analyses of the remnants.more » « less
-
Context.There is a growing number of peculiar events that cannot be assigned to any of the main classes. SN 1987A and a handful of similar objects, thought to be explosive outcomes of blue supergiant stars, is one of them: while their spectra closely resemble those of H-rich (IIP) SNe, their light curve (LC) evolution is very different. Aims.Here we present the detailed photometric and spectroscopic analysis of SN 2021aatd, a peculiar Type II explosion. While its early-time evolution resembles that of the slowly evolving double-peaked SN 2020faa (although at a lower luminosity scale), after ∼40 days its LC shape becomes similar to that of SN 1987A-like explosions. Methods.In addition to comparing LCs, color curves, and spectra of SN 2021aatd to those of SNe 2020faa, 1987A, and other objects, we compared the observed spectra with our ownSYN++models and with the outputs of published radiative transfer models. We also carried out a detailed modeling of the pseudo-bolometric LCs of SNe 2021aatd and 1987A with a self-developed semi-analytical code, assuming a two-component ejecta (core + shell), and involving the rotational energy of a newborn magnetar in addition to radioactive decay. Results.We find that the photometric and the spectroscopic evolution of SN 2021aatd can be well described with the explosion of a ∼15M⊙blue supergiant star. Nevertheless, SN 2021aatd shows higher temperatures and weaker Na ID and Ba II6142 Å lines than SN 1987A, which is instead reminiscent of IIP-like atmospheres. With the applied two-component ejecta model (accounting for decay and magnetar energy), we can successfully describe the bolometric LC of SN 2021aatd, including the first ∼40-day phase showing an excess compared to 87A-like SNe, but being strikingly similar to that of the long-lived SN 2020faa. Nevertheless, finding a unified model that also explains the LCs of more luminous events (e.g., SN 2020faa) is still a matter of debate.more » « less
-
Abstract We report on a new search for continuous gravitational waves from NS 1987A, the neutron star born in SN 1987A, using open data from Advanced LIGO and Virgo’s third observing run (O3). The search covered frequencies from 35–1050 Hz, more than 5 times the band of the only previous gravitational-wave search to constrain NS 1987A. Our search used an improved code and coherently integrated from 5.10 to 14.85 days depending on frequency. No astrophysical signals were detected. By expanding the frequency range and using O3 data, this search improved on strain upper limits from the previous search and was sensitive at the highest frequencies to ellipticities of 1.6 × 10−5andr-mode amplitudes of 4.4 × 10−4, both an order of magnitude improvement over the previous search and both well within the range of theoretical predictions.more » « less
-
Abstract We report on a search for continuous gravitational waves (GWs) from NS 1987A, the neutron star born in SN 1987A. The search covered a frequency band of 75–275 Hz, included a wide range of spin-down parameters for the first time, and coherently integrated 12.8 days of LIGO data below 125 Hz and 8.7 days of LIGO data above 125 Hz from the second Advanced LIGO–Virgo observing run. We found no astrophysical signal. We set upper limits on GW emission as tight as an intrinsic strain of 2 × 10−25at 90% confidence. The large spin-down parameter space makes this search the first astrophysically consistent one for continuous GWs from NS 1987A. Our upper limits are the first consistent ones to beat an analog of the spin-down limit based on the age of the neutron star and hence are the first GW observations to put new constraints on NS 1987A.more » « less
An official website of the United States government

