Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain’s efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces. 
                        more » 
                        « less   
                    
                            
                            Cations Control Lipid Bilayer Memcapacitance Associated with Long-Term Potentiation
                        
                    
    
            Phospholipid bilayers can be described as capacitors whose capacitance per unit area (specific capacitance, Cm) is determined by their thickness and dielectric constant–independent of applied voltage. It is also widely assumed that the Cm of membranes can be treated as a “biological constant”. Recently, using droplet interface bilayers (DIBs), it was shown that zwitterionic phosphatidylcholine (PC) lipid bilayers can act as voltage-dependent, nonlinear memory capacitors, or memcapacitors. When exposed to an electrical “training” stimulation protocol, capacitive energy storage in lipid membranes was enhanced in the form of long-term potentiation (LTP), which enables biological learning and long-term memory. LTP was the result of membrane restructuring and the progressive asymmetric distribution of ions across the lipid bilayer during training, which is analogous, for example, to exponential capacitive energy harvesting from self-powered nanogenerators. Here, we describe how LTP could be produced from a membrane that is continuously pumped into a nonequilibrium steady state, altering its dielectric properties. During this time, the membrane undergoes static and dynamic changes that are fed back to the system’s potential energy, ultimately resulting in a membrane whose modified molecular structure supports long-term memory storage and LTP. Here, we also show that LTP is very sensitive to different salts (KCl, NaCl, LiCl, and TmCl3), with LiCl and TmCl3 having the most profound effect in depressing LTP, relative to KCl. This effect is related to how the different cations interact with the bilayer zwitterionic PC lipid headgroups primarily through electric-field-induced changes to the statistically averaged orientations of water dipoles at the bilayer headgroup interface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219289
- PAR ID:
- 10526459
- Publisher / Repository:
- osti.gov
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 15
- Issue:
- 37
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 44533 to 44540
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Electrical signals may propagate along neuronal membranes in the brain, thus enabling communication between nerve cells. In doing so, lipid bilayers, fundamental scaffolds of all cell membranes, deform and restructure in response to such electrical activity. These changes impact the electromechanical properties of the membrane, which then physically store biological memory. This memory can exist either over a short or long period of time. Traditionally, biological memory is defined by the strengthening or weakening of transmissions between individual neurons. Here, we show that electrical stimulation may also alter the properties of the lipid membrane, thus pointing toward a novel mechanism for memory storage. Furthermore, based on the analysis of existing electrophysiological data, we study molecular mechanisms underlying the long-term potentiation in phospholipid membranes. Finally, we examine possible relationships between the memory capacitive properties of lipid membranes, neuronal learning, and memory.more » « less
- 
            Synaptic plasticity refers to activity-dependent synaptic strengthening or weakening between neurons. It is usually associated with homosynaptic plasticity, which refers to a synaptic junction controlled by interactions between specific neurons. Heterosynaptic plasticity, on the other hand, lacks this specificity. It involves much larger populations of synapses and neurons and can be associated with changes in synaptic strength due to nonlocal alterations in the ambient electrochemical environment. This paper presents specific examples demonstrating how variations in the ambient electrochemical environment of lipid membranes can impact the nonlinear dynamical behaviors of memristive and memcapacitive systems in droplet interface bilayers (DIBs). Examples include the use of pH as a modulatory factor that alters the voltage-dependent memristive behavior of alamethicin ion channels in DIB lipid bilayers, and the discovery of long-term potentiation (LTP) in a lipid bilayer-only system after application of electrical stimulation protocols.more » « less
- 
            Abstract Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain’s efficiency and flexible cognitive capabilities. While memory resistors, or memristors, have been widely reported, other types of memelements remain underexplored or undiscovered. Here we report the first example of a volatile, voltage-controlled memcapacitor in which capacitive memory arises from reversible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are governed by two implicitly-coupled, voltage-dependent state variables—membrane radius and thickness. Further, our system is capable of tuneable signal processing and learning via synapse-like, short-term capacitive plasticity. These findings will accelerate the development of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as models to study capacitive memory and signal processing in neuronal membranes.more » « less
- 
            Abstract Brain‐inspired (or neuromorphic) computing circumvents costly bottlenecks in conventional Von Neumann architectures by collocating memory and processing. This is accomplished through dynamic material architectures, strengthening or weakening internal conduction pathways similar to synaptic connections within the brain. A new class of neuromorphic materials approximates synaptic interfaces using lipid membranes assembled via the droplet interface bilayer (DIB) technique. These DIB membranes have been studied as novel memristors or memcapacitors owing to the soft, reconfigurable nature of both the lipid membrane geometry and the embedded ion‐conducting channels. In this work, a biomolecular approach to neuromorphic materials is expanded frommodel synapsesto acharge‐integrating model neuron. In these serial membrane networks, it is possible to create distributions of voltage‐sensitive gates capable of trapping ionic charge. This trapped charge creates transmembrane potential differences that drive changes in the system's net capacitance through electrowetting, providing a synaptic weight that changes in response to the history and timing of input signals. This fundamental change from interfacial memory (dimensions of the membrane) to internal memory (charge trapped within the droplets) provides a functional plasticity capable of multiple weights, longer‐term retention roughly an order of magnitude greater than memory stored in the membranes alone, and programming‐erasure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
