Abstract The Pauli exclusion principle governs the fundamental structure and function of fermionic systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure state, it is subject to additional restrictions known as the generalized Pauli constraints (GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system using data from a superconducting-qubit quantum computer. We prepare states of systems with three-to-seven qubits directly on the quantum device and measure the one-fermion reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the presence of a single-qubit environment. Results confirm experimentally that the openness of a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with potential applications from quantum computing and sensing to noise-assisted energy transfer.
more »
« less
Search for charge non-conservation and Pauli exclusion principle violation with the Majorana Demonstrator
Charge conservation and the Pauli exclusion principle result from fundamental symmetries in the standard model of particle physics, and are typically taken as axiomatic. High-precision tests for small violations of these symmetries could point to new physics. Here we consider three models for violation of these processes, which would produce detectable ionization in the high-purity germanium detectors of the MAJORANA DEMONSTRATOR experiment. Using a 37.5 kg yr exposure, we report a lower limit on the electron mean lifetime, improving the previous best limit for the e->nununu decay channel by more than an order of magnitude. We also present searches for two types of violation of the Pauli exclusion principle, setting limits on the probability of an electron to be found in a symmetric quantum state.
more »
« less
- Award ID(s):
- 2209530
- PAR ID:
- 10526479
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Physics
- Volume:
- 20
- Issue:
- 7
- ISSN:
- 1745-2473
- Page Range / eLocation ID:
- 1078 to 1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Pauli exclusion principle combined with interactions between fermions is a unifying basic mechanism that can give rise to quantum phases with spin order in diverse physical systems. Transition-metal ferromagnets, with isotropic ordering respecting crystallographic rotation symmetries and with a net magnetization, are a relatively common manifestation of this mechanism, leading to numerous practical applications, e.g., in spintronic information technologies. In contrast, superfluid 3He has been a unique and fragile manifestation, in which the spin-ordered phase is anisotropic, breaking the real-space rotation symmetries, and has zero net magnetization. The recently discovered altermagnets share the spin-ordered anisotropic zero-magnetization nature of superfluid $^3$He. Yet, altermagnets appear to be even more abundant than ferromagnets, can be robust, and are projected to offer superior scalability for spintronics compared to ferromagnets. Our Perspective revisits the decades of research of the spin-ordered anisotropic zero-magnetization phases including, besides superfluid $^3$He, also theoretically conceived counterparts in nematic electronic liquid-crystal phases. While all sharing the same extraordinary character of symmetry breaking, we highlight the distinctions in microscopic physics which set altermagnets apart and enable their robust and abundant material realizations.more » « less
-
Abstract The intersection of superconductivity and ferroelectricity hosts a wide range of exotic quantum phenomena. Here, we report on the observation of superconductivity in high-quality tin telluride films grown by molecular beam epitaxy. Unintentionally doped tin telluride undergoes a ferroelectric transition at ~100 K. The critical temperature of superconductivity increases monotonically with indium concentration. The critical field of superconductivity, however, does not follow the same behavior as critical temperature with indium concentration and exhibits a carrier-density-dependent violation of the Pauli limit. The electron–phonon coupling, according to the McMillan formula, exhibits a systematic enhancement with indium concentration, suggesting a potential violation of Bardeen–Cooper–Schrieffer (BCS) weak coupling at high indium concentrations.more » « less
-
We study a 2D measurement-only random circuit motivated by the Bacon-Shor error correcting code. We find a rich phase diagram as one varies the relative probabilities of measuring nearest-neighbor Pauli XX and ZZ check operators. In the Bacon-Shor code, these checks commute with a group of stabilizer and logical operators, which therefore represent conserved quantities. Described as a subsystem symmetry, these conservation laws lead to a continuous phase transition between an X-basis and Z-basis spin-glass order. The two phases are separated by a critical point where the entanglement entropy between two halves of an L × L system scales as L ln L, a logarithmic violation of the area law. We generalize to a model where the check operators break the subsystem symmetries (and the Bacon-Shor code structure). In tension with established heuristics, we find that the phase transition is replaced by a smooth crossover, and the X - and Z -basis spin-glass orders spatially coexist. Additionally, if we approach the line of subsystem symmetries away from the critical point in the phase diagram, some spin-glass order parameters jump discontinuously.more » « less
-
Abstract It is conjectured that the Pauli exclusion principle alone may be responsible for a particular geometric arrangement of confined systems of identical fermions even when there is no interaction between them. These geometric structures, called Pauli crystals, are predicted for a two‐dimensional (2D) system of free fermions under harmonic confinement. In this work, the possibility of this outcome is pursued and a theoretical model is considered that may capture both qualitatively and quantitatively, the key features of the abovementioned setup. The results for and 6 particles show that the minimum energy configuration corresponds to and is in good quantitative agreement with the reported values of Pauli crystals seen in single‐shot imaging data obtained via the configuration density technique. Numerical results for larger systems of and 30 particles show that the crystalline configurations observed are not the same as the classical Wigner crystal structures that emerge should the confined charged particles interact with a Coulomb potential. An important question floated is whether such crystalline structures do really exist in a quantum system or whether they are artifacts of the methods used to analyze them.more » « less
An official website of the United States government

