skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduced Scaling Real-Time Coupled Cluster Theory
Real-time coupled cluster (CC) methods have several advantages over their frequency-domain counterparts, namely, response and equation of motion CC theories. Broadband spectra, strong fields, and pulse manipulation allow for the simulation of complex spectroscopies that are unreachable using frequency-domain approaches. Due to the high-order polynomial scaling, the required numerical time propagation of the CC residual expressions is a computationally demanding process. This scaling may be reduced by local correlation schemes, which aim to reduce the size of the (virtual) orbital space by truncation according to user-defined parameters. We present the first application of local correlation to real-time CC. As in previous studies of locally correlated frequency-domain CC, traditional local correlation schemes are of limited utility for field-dependent properties; however, a perturbation-aware scheme proves promising. A detailed analysis of the amplitude dynamics suggests that the main challenge is a strong time dependence of the wave function sparsity.  more » « less
Award ID(s):
2154753
PAR ID:
10526515
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
40
ISSN:
1089-5639
Page Range / eLocation ID:
8486 to 8499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Daily precipitation extremes are projected to intensify with increasing moisture under global warming following the Clausius-Clapeyron (CC) relationship at about $$ 7\% /^\circ {\text{C}} $$ 7 % / ∘ C . However, this increase is not spatially homogeneous. Projections in individual models exhibit regions with substantially larger increases than expected from the CC scaling. Here, we leverage theory and observations of the form of the precipitation probability distribution to substantially improve intermodel agreement in the medium to high precipitation intensity regime, and to interpret projected changes in frequency in the Coupled Model Intercomparison Project Phase 6. Besides particular regions where models consistently display super-CC behavior, we find substantial occurrence of super-CC behavior within a given latitude band when the multi-model average does not require that the models agree point-wise on location within that band. About 13% of the globe and almost 25% of the tropics (30% for tropical land) display increases exceeding 2CC. Over 40% of tropical land points exceed 1.5CC. Risk-ratio analysis shows that even small increases above CC scaling can have disproportionately large effects in the frequency of the most extreme events. Risk due to regional enhancement of precipitation scale increase by dynamical effects must thus be included in vulnerability assessment even if locations are imprecise. 
    more » « less
  2. Abstract Optical computing with integrated photonics brings a pivotal paradigm shift to data-intensive computing technologies. However, the scaling of on-chip photonic architectures using spatially distributed schemes faces the challenge imposed by the fundamental limit of integration density. Synthetic dimensions of light offer the opportunity to extend the length of operand vectors within a single photonic component. Here, we show that large-scale, complex-valued matrix-vector multiplications on synthetic frequency lattices can be performed using an ultra-efficient, silicon-based nanophotonic cavity acousto-optic modulator. By harnessing the resonantly enhanced strong electro-optomechanical coupling, we achieve, in a single such modulator, the full-range phase-coherent frequency conversions across the entire synthetic lattice, which constitute a fully connected linear computing layer. Our demonstrations open up the route toward the experimental realizations of frequency-domain integrated optical computing systems simultaneously featuring very large-scale data processing and small device footprints. 
    more » « less
  3. null (Ed.)
    ABSTRACT Future generations of radio interferometers targeting the 21 cm signal at cosmological distances with N ≫ 1000 antennas could face a significant computational challenge in building correlators with the traditional architecture, whose computational resource requirement scales as $$\mathcal {O}(N^2)$$ with array size. The fundamental output of such correlators is the cross-correlation products of all antenna pairs in the array. The FFT-correlator architecture reduces the computational resources scaling to $$\mathcal {O}(N\log {N})$$ by computing cross-correlation products through a spatial Fourier transform. However, the output of the FFT-correlator is meaningful only when the input antenna voltages are gain- and phase-calibrated. Traditionally, interferometric calibration has used the $$\mathcal {O}(N^2)$$ cross-correlations produced by a standard correlator. This paper proposes two real-time calibration schemes that could work in parallel with an FFT-correlator as a self-contained $$\mathcal {O}(N\log {N})$$ correlator system that can be scaled to large-N redundant arrays. We compare the performance and scalability of these two calibration schemes and find that they result in antenna gains whose variance decreases as 1/log N with increase in the size of the array. 
    more » « less
  4. This paper presents a new turbo decision feedback equalizer and decoder (TDFED) for the orthogonal time-frequency space (OTFS) system of underwater mobile acoustic communications where the communication channel suffers from severe multipath and Doppler effects simultaneously. The proposed TDFED employs a set of feedforward and feedback filters in the time domain instead of the common approach that employs a normalized least mean square equalizer in the delay-Doppler domain. The receiver also utilizes low-complexity improved proportionate normalized least mean square channel estimation in the delay-Doppler domain. Practical OTFS modulation schemes are designed for acoustic transmission at a center frequency of 115 kHz and a symbol rate of 11.5 ksps (kilo-symbols-per-second). Several lake experiments in mobile communication scenarios are conducted to evaluate the proposed OTFS in comparison to the single-carrier coherent modulation (SCCM) and the orthogonal frequency division modulation (OFDM) schemes. The experimental results demonstrate that the proposed OTFS receiver effectively reduces the accuracy requirements of the Doppler compensation algorithm compared to the SCCM and OFDM schemes. The proposed TDFED algorithm achieves a much better bit error rate against long-multipath fading and severe Doppler shift than the existing delay-Doppler domain equalizers. 
    more » « less
  5. Abstract The environment may significantly affect molecular properties. Thus, it is desirable to account explicitly for these effects on the wave function and its derivatives, especially when the latter are evaluated with accurate methods, such as those belonging to coupled cluster (CC) theory. In this tutorial review, we discuss how to combine CC methods with the polarizable continuum model of solvation (PCM). We describe useful approximations that include the solvent response to the correlation and excited state equations while maintaining the computational cost comparable to in vacuo calculations. Although applied to PCM, the theoretical framework presented in this review is general and can be used with any polarizable embedding model. Representative applications of the CC‐PCM method to ground and excited state properties of solvated molecules are presented, and comparisons with experiment, and between the full and approximate schemes are discussed. 
    more » « less