skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient subglacial water routing efficiency modulates ice velocities prior to surge termination on Sít’ Kusá, Alaska
Abstract Glacier surges are opportunities to study large amplitude changes in ice velocities and accompanying links to subglacial hydrology. Although the surge phase is generally explained as a disruption in the glacier's ability to drain water from the bed, the extent and duration of this disruption remain difficult to observe. Here we present a combination of in situ and remotely sensed observations of subglacial water discharge and evacuation during the latter half of an active surge and subsequent quiescent period. Our data reveal intermittently efficient subglacial drainage prior to surge termination, showing that glacier surges can persist in the presence of channel-like subglacial drainage and that successive changes in subglacial drainage efficiency can modulate active phase ice dynamics at timescales shorter than the surge cycle. Our observations favor an explanation of fast ice flow sustained through an out-of-equilibrium drainage system and a basal water surplus rather than binary switching between states in drainage efficiency.  more » « less
Award ID(s):
1954006 1954021
PAR ID:
10526537
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Glaciology
Date Published:
Journal Name:
Journal of Glaciology
ISSN:
0022-1430
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2008-2013 provided a rare opportunity to study surging in a large and complex system. We simulate glacier evolution for a 20 year quiescent phase, where geometrical and hydrological changes lead to conditions favorable for surging, and the first two years of a surge phase where a surge-front propagates through the system activating the surging ice. For each phase, we analyze the simulated elevation-change and ice-velocity pattern, and infer information on the evolving basal drainage system through hydropotential analysis. During the quiescent phase simulation, several reservoir areas form at locations consistent with those observed. Up-glacier of these reservoir areas, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that act to dam the down-glacier flow of ice and water. Based on the BBGS’s end-of-quiescence state, we propose several surge initiation criteria to predict when the system is set to surge. In the surge simulation, we model surge evolution through Bering Glacier’s trunk by implementing a new friction law that mimics a propagating surge-wave. Modeled surge velocities share spatial patterns and reach similar peaks as those observed in 2008-2010. As the surge progresses through the glacier, drainage efficiency further degrades in the active surging zone from its already inefficient, end-of-quiescence state. Satellite observations from 2013 indicate hydraulic drainage efficiency throughout the glacier was restored after the surge had ended. 
    more » « less
  2. Abstract Glacier speedups occur on daily to centennial timescales. While basal water and subglacial drainage configuration are thought to drive glacier speedups across these timescales, it remains unclear whether this forcing always occurs through the same mechanisms. Here, we explore whether the enthalpy model of glacier surging can explain speedups over a broader range of timescales if modified to account for seasonality in surface melt and continuous water supply to the glacier bed. We simulate velocity oscillations that range from seasonal to years. Our model results more closely resemble observations of surges than previous model versions because ice flow variability at seasonal and multi‐year timescales is reproduced simultaneously through hydrological forcing. Under favorable conditions, seasonal water delivery to the bed gradually accumulates in a poorly‐connected basal drainage system, priming the glacier to surge. Surges themselves are marked by high water fluxes and enthalpy drainage from the glacier base. 
    more » « less
  3. Abstract The Bering‐Bagley Glacier System (BBGS), Alaska, Earth's largest temperate surging glacier, surged in 2008–2013. We use numerical modeling and satellite observations to investigate how surging in a large and complex glacier system differs from surging in smaller glaciers for which our current understanding of the surge phenomenon is based. With numerical simulations of a long quiescent phase and a short surge phase in the BBGS, we show that surging is more spatiotemporally complex in larger glaciers with multiple reservoir areas forming during quiescence which interact in a cascading manner when ice accelerates during the surge phase. For each phase, we analyze the simulated elevation‐change and ice‐velocity pattern, infer information on the evolving basal drainage system through hydropotential analysis, and supplement these findings with observational data such as CryoSat‐2 digital elevation maps. During the quiescent simulation, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that dam the down‐glacier flow of ice and water. In the surge simulation, we model surge evolution through Bering Glacier's trunk by imposing a basal friction representation that mimics a propagating surge wave. As the surge progresses, drainage efficiency further degrades in the active surging‐zone from its already inefficient, end‐of‐quiescence state. Results from this study improve our knowledge of surging in large and complex systems which generalizes to glacial accelerations observed in outlet glaciers of Greenland, thus reducing uncertainty in modeling sea‐level rise. 
    more » « less
  4. null (Ed.)
    Abstract Glacier surges are periodic episodes of mass redistribution characterized by dramatic increases in ice flow velocity and, sometimes, terminus advance. We use optical satellite imagery to document five previously unexamined surge events of Sít’ Kusá (Turner Glacier) in the St. Elias Mountains of Alaska from 1983 to 2013. Surge events had an average recurrence interval of ~5 years, making it the shortest known regular recurrence interval in the world. Surge events appear to initiate in the winter, with speeds reaching up to ~25 m d −1 . The surges propagate down-glacier over ~2 years, resulting in maximum thinning of ~100 m in the reservoir zone and comparable thickening at the terminus. Collectively, the rapid recurrence interval, winter initiation and down-glacier propagation suggest Sít’ Kusá's surges are driven by periodic changes in subglacial hydrology and glacier sliding. Elevation change observations from the northern tributary show a kinematic disconnect above and below an icefall located 23 km from the terminus. We suggest the kinematic disconnect inhibits drawdown from the accumulation zone above the icefall, which leads to a steady flux of ice into the reservoir zone, and contributes to the glacier's exceptionally short recurrence interval. 
    more » « less
  5. Abstract The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise. 
    more » « less