Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Glacier speedups occur on daily to centennial timescales. While basal water and subglacial drainage configuration are thought to drive glacier speedups across these timescales, it remains unclear whether this forcing always occurs through the same mechanisms. Here, we explore whether the enthalpy model of glacier surging can explain speedups over a broader range of timescales if modified to account for seasonality in surface melt and continuous water supply to the glacier bed. We simulate velocity oscillations that range from seasonal to years. Our model results more closely resemble observations of surges than previous model versions because ice flow variability at seasonal and multi‐year timescales is reproduced simultaneously through hydrological forcing. Under favorable conditions, seasonal water delivery to the bed gradually accumulates in a poorly‐connected basal drainage system, priming the glacier to surge. Surges themselves are marked by high water fluxes and enthalpy drainage from the glacier base.more » « less
-
Abstract Glacier surges are opportunities to study large amplitude changes in ice velocities and accompanying links to subglacial hydrology. Although the surge phase is generally explained as a disruption in the glacier's ability to drain water from the bed, the extent and duration of this disruption remain difficult to observe. Here we present a combination of in situ and remotely sensed observations of subglacial water discharge and evacuation during the latter half of an active surge and subsequent quiescent period. Our data reveal intermittently efficient subglacial drainage prior to surge termination, showing that glacier surges can persist in the presence of channel-like subglacial drainage and that successive changes in subglacial drainage efficiency can modulate active phase ice dynamics at timescales shorter than the surge cycle. Our observations favor an explanation of fast ice flow sustained through an out-of-equilibrium drainage system and a basal water surplus rather than binary switching between states in drainage efficiency.more » « less
-
Abstract We use satellite image processing techniques to measure surface elevation and velocity changes on a temperate surging glacier, Sít’ Kusá, throughout its entire 2013–2021 surge cycle. We present detailed records of its dynamic changes during quiescence (2013–2019) and its surge progression (2020–2021). Throughout quiescence, we observe order-of-magnitude speedups that propagate down-glacier seasonally from the glacier's upper northern tributary, above a steep icefall, into the reservoir zone for the surging portion of the glacier. The speedups initiate in fall and gradually accelerate through winter until they peak in late spring, ~1 − 2 months after the onset of melt. Propagation distance of the speedups controls the distribution of mass accumulation in the reservoir zone prior to the surge. Furthermore, the intensity and propagation distance of each year's speedup is correlated with the positive degree day sum from the preceding melt season, suggesting that winter melt storage drives the seasonal speedups. We demonstrate that the speedups are kinematically similar to the 2020–2021 surge, differing mainly in that the surge propagates past the dynamic balance line at the lower limit of the reservoir zone, likely triggered by the exceedance of a tipping point in mass accumulation and basal enthalpy in the reservoir zone.more » « less
An official website of the United States government
