skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eccentricity and inclination of massive planets inside low-density cavities: results of 3D simulations
ABSTRACT We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using three-dimensional (3D) simulations. When the planet’s orbit is aligned with the equatorial plane of the disc, the eccentricity increases to high values of 0.7–0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits, the eccentricity increases due to the Kozai–Lidov mechanism, where the disc acts as an external massive body, which perturbs the planet’s orbit. At small inclination angles, $${\lesssim}30^\circ$$, the resonant interaction with the inner disc strongly contributes to the eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai–Lidov mechanism. We conclude that planets inside low-density cavities tend to acquire high eccentricity if favourable conditions give sufficient time for growth. The final value of the planet’s eccentricity after the disc dispersal depends on the planet’s mass and the properties of the cavity and protoplanetary disc.  more » « less
Award ID(s):
2009820
PAR ID:
10526653
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3509-3525
Size(s):
p. 3509-3525
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Highly eccentric orbits are one of the major surprises of exoplanets relative to the solar system and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in the semimajor axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system’s origins and architecture. We confirm a second planet in the system withMc= 0.40 ± 0.09Mjupand Pc= 1919 ± 27 days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent eccentric Kozai–Lidov perturbations that excite Kepler-1656b’s eccentricity gently, i.e., without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearly perpendicular configuration with respect to the inner planet orbit based on the outcomes of our simulations and make observable predictions for the inner planet’s spin–orbit angle. Our methodology can be applied to other eccentric or tidally locked planets to constrain their origins, orbital configurations, and properties of a potential companion. 
    more » « less
  2. Abstract WASP-107 b seems to be a poster child of the long-suspected high-eccentricity migration scenario. It is on a 5.7 day, polar orbit. The planet is Jupiter-like in radius but Neptune-like in mass with exceptionally low density. WASP-107 c is on a 1100 day,e= 0.28 orbit with at least Saturn mass. Planet b may still have a residual eccentricity of 0.06 ± 0.04: the ongoing tidal dissipation leads to the observed internally heated atmosphere and hydrodynamic atmospheric erosion. We present a population synthesis study coupling octupole Lidov–Kozai oscillations with various short-range forces, while simultaneously accounting for the radius inflation and tidal disruption of the planet. We find that a high-eccentricity migration scenario can successfully explain nearly all observed system properties. Our simulations further suggest that the initial location of WASP-107 b at the onset of migration is likely within the snowline (<0.5 au). More distant initial orbits usually lead to tidal disruption or orbit crossing. WASP-107 b most likely lost no more than 20% of its mass during the high-eccentricity migration, i.e., it did not form as a Jupiter-mass object. More vigorous tidally induced mass loss leads to disruption of the planet during migration. We predict that the current-day mutual inclination between the planets b and c is substantial: at least 25°–55°, which may be tested with future Gaia astrometric observations. Knowing the current-day mutual inclination may further constrain the initial orbit of planet b. We suggest that the proposed high-eccentricity migration scenario of WASP-107 may be applicable to HAT-P-11, GJ-3470, HAT-P-18, and GJ-436, which have similar orbital architectures. 
    more » « less
  3. ABSTRACT We carry out hydrodynamical simulations to study the eccentricity growth of a 1–30 Jupiter mass planet located inside the fixed cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65–0.75. We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance. 
    more » « less
  4. Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N -body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit. 
    more » « less
  5. Abstract Some evolved binaries, namely post–asymptotic giant branch (AGB) binaries, are surrounded by stable and massive circumbinary disks similar to protoplanetary disks found around young stars. Around 10% of these disks are transition disks: they have a large inner cavity in the dust. Previous interferometric measurements and modeling have ruled out these cavities being formed by dust sublimation and suggested that they are due to massive circumbinary planets that trap dust in the disk and produce the observed depletion of refractory elements on the surfaces of the post-AGB stars. In this study, we test an alternative scenario in which the large cavities could be due to dynamical truncation from the inner binary. We performed near-infrared interferometric observations with the CHARA Array on the archetype of such a transition disk around a post-AGB binary: AC Her. We detect the companion at ten epochs over 4 yr and determine the three-dimensional orbit using these astrometric measurements in combination with a radial velocity time series. This is the first astrometric orbit constructed for a post-AGB binary system. We derive the best-fit orbit with a semimajor axis of 2.01 ± 0.01 mas (2.83 ± 0.08 au), inclination (142.9 ± 1.1)°, and longitude of the ascending node (155.1 ± 1.8)°. We find that the theoretical dynamical truncation and dust sublimation radii are at least ∼3× smaller than the observed inner disk radius (∼21.5 mas or 30 au). This strengthens the hypothesis that the origin of the cavity is due to the presence of a circumbinary planet. 
    more » « less