skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ontogenetic biomechanics of tufted ( Sapajus ) and untufted ( Cebus ) capuchin mandibles
Abstract ObjectivesCortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross‐sectional properties throughout capuchin ontogeny and compare captive versus wild, semi‐provisioned groups. Tufted capuchins (Sapajusspp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebusspp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adultSapajusmandibles can resist higher bending/shear/torsional loads. Materials and methodsThis study utilized microCT scans of 22Cebusand 45Sapajusfrom early infancy to adulthood from three sample populations: one captiveCebus, one captiveSapajus, and one semi‐provisioned, free‐rangingSapajus. Mandibular cross‐sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one‐way ANOVAs were performed to assess differences between and within the sample populations. ResultsMandible robusticity increases across ontogeny for all three sample populations.Sapajuswere better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi‐provisioned, free‐rangingSapajustend to show increased abilities to resist bending and torsional loading but not shear loading compared to captiveSapajus. DiscussionThis study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free‐ranging sample populations.  more » « less
Award ID(s):
1945767 2316863 1945771 1944915
PAR ID:
10526667
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
ISSN:
2692-7691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT ObjectivesWild juvenile capuchins exhibit lower feeding success than adults, particularly for mechanically challenging foods, but ontogenetic changes in oral food processing behaviors related to this reduced success are unknown. We test how oral food processing efficiency varies across development in an experimental setting in tufted capuchins (Sapajusspp.). Further, we simulate discontinuous feeding observations to test the comparability of behaviors measured in wild and captive settings. Materials and MethodsTwenty‐nine captive and semi‐wild infants (n = 2), juveniles (n = 12), older juveniles (n = 4), and subadults‐adults (n = 11) were video recorded while feeding at the Núcleo de Procriação de Macacos‐Prego Research Center (Araçatuba, Brazil). Each animal was offered a series of five foods ranging in volume, toughness, and elastic modulus. ResultsMeasures of oral food processing inconsistently varied with sex; however, younger animals were less efficient in food processing than older individuals. Larger and more mechanically challenging foods were associated with longer feeding sequence durations and an increased frequency of anterior ingestion, posterior ingestion, and chewing during a feeding sequence. Simulated discontinuous data from the first and last halves of the feeding sequences closely replicated continuous results. ConclusionsOur results indicate younger capuchins have reduced oral food processing efficiency compared to adults through increased duration, behavioral frequencies, number of chews, and behavioral patterns. Further, our continuous and discontinuous comparisons support the use of discontinuous feeding behaviors from the first and last halves of the feeding sequence. We caution that researchers should be careful to capture infrequent behaviors when using discontinuous data. 
    more » « less
  2. Abstract The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. UnlikeCebus,Sapajushave a mechanically challenging diet and behavioral observations of juvenileSapajussuggest these foods are exploited early in development. Landmarks were placed on three‐dimensional surface models of an ontogenetic series ofSapajusandCebusskulls (n = 53) and used to generate shape data and jaw‐leverage estimates across the tooth row for three jaw‐closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different betweenSapajusandCebusthroughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater inSapajuscompared toCebuswhen calculated at the permanent dentition. We used two‐block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates.Sapajus, but notCebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show thatSapajusandCebusexhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape inSapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods inSapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology. 
    more » « less
  3. Non-invasive health monitoring is advantageous for wild and captive primate populations because it reduces the need for traditional invasive techniques (i.e., anesthetization) that can be stressful and potentially harmful for individuals. The biomarker neopterin is an emerging tool in primatology to measure immune activation and immunosenescence, however, most neopterin studies have focused on catarrhine species with little comparative work examining neopterin and health in platyrrhines. To address this gap, we validated a commercially available enzyme-linked immunosorbent assay (ELISA) to measure urinary neopterin in two types of capuchin monkeys, a wild population of white-faced capuchins ( Cebus imitator ) and a socially housed captive colony of tufted capuchins ( Sapajus apella ). We analytically validated methods for measuring urinary neopterin in two capuchin populations and demonstrated that two commonly-used methods to control for urine concentration—creatinine and specific gravity (SG)—produced highly concordant results. We also biologically validated these methods by examining variation in neopterin levels based on environment (captive and wild) and age, and changes in levels associated with immune-response. We found that neopterin increased after immune perturbation (rabies vaccine booster), varied by environmental condition, and mirrored expected trends in immune system ontogeny. Our results improve understanding of the innate immune system in platyrrhine species and suggest neopterin may be useful for non-invasive health monitoring in both captive and wild primates. 
    more » « less
  4. ABSTRACT Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length–tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp. Bite force and gape were also compared across geometric and mechanical properties of mechanically challenging foods to investigate relationships between bite force, gape and food accessibility (defined here as the ability to breach shelled nuts). Bite forces at a range of gapes and feeding behavioral data were collected from a cross-sectional ontogenetic series of 20 captive and semi-wild tufted capuchins at the Núcleo de Procriação de Macacos-Prego Research Center in Araçatuba, Brazil. These data were paired with body mass, photogrammetric measures of jaw length and facial width, and food geometric and material properties. Tufted capuchins with larger body masses had absolutely higher in vivo bite forces and gapes, and animals with wider faces had absolutely higher bite forces. Bite forces and gapes were significantly smaller in juveniles compared with subadults and adults. These are the first primate data to empirically demonstrate the gapes at which maximum active bite force is generated and to demonstrate relationships to food accessibility. These data advance our understanding of how primates meet the changing performance demands of the feeding system during development. 
    more » « less
  5. ABSTRACT ObjectivesMost human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates. Materials and MethodsWe measured PT surface area in chimpanzees (Pan troglodytes,n = 90), bonobos (Pan paniscus,n = 21), gorillas (Gorilla gorilla,n = 34), orangutans (Pongospp.,n = 33), olive baboons (Papio anubis,n = 105), rhesus macaques (Macaca mulatta,n = 144), and tufted capuchins (Sapajus apella,n = 29) from magnetic resonance imaging scans. ResultsOur findings reveal significant leftward biases in PT surface area among chimpanzees, gorillas, olive baboons, rhesus macaques, and capuchins. We did not find significant population‐level asymmetries among orangutans and bonobos, which could be due, in part, to small sample sizes. We also detected significant age effects for rhesus macaques only, and no significant sex effects for any species. DiscussionThe observation of a population‐level leftward bias for PT surface area among not only hominids (chimpanzees and gorillas), but also two cercopithecoids (olive baboons and rhesus macaques) and one platyrrhine (tufted capuchins) suggests that PT lateralization was likely present in some early anthropoid primate ancestors and relatives. This provides further evidence that human brains have since undergone changes to the size and connectivity of the PT in response to selection for the cognitive processes needed to support the evolution of language and speech. 
    more » « less