skip to main content


Title: Experimental demonstration of magnetic tunnel junction-based computational random-access memory
Abstract

The conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called “computational random-access memory (CRAM),” has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there is a lack of experimental demonstration and study of CRAM to evaluate its computational accuracy, which is a realistic and application-critical metric for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations, as well as 2-, 3-, and 5-input logic operations, are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of models has been developed to characterize the accuracy of CRAM computation. Scalar addition, multiplication, and matrix multiplication, which are essential building blocks for many conventional and machine intelligence applications, are evaluated and show promising accuracy performance. With the confirmation of MTJ-based CRAM’s accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.

 
more » « less
Award ID(s):
2230124
PAR ID:
10526675
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Unconventional Computing
Volume:
1
Issue:
1
ISSN:
3004-8672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As the energy and hardware investments necessary for conventional high‐precision digital computing continue to explode in the era of artificial intelligence (AI), a change in paradigm that can trade precision for energy and resource efficiency is being sought for many computing applications. Stochastic computing (SC) is an attractive alternative since, unlike digital computers, which require many logic gates and a high transistor volume to perform basic arithmetic operations such as addition, subtraction, multiplication, sorting, etc., SC can implement the same using simple logic gates. While it is possible to accelerate SC using traditional silicon complementary metal–oxide–semiconductor (CMOS) technology, the need for extensive hardware investment to generate stochastic bits (s‐bits), the fundamental computing primitive for SC, makes it less attractive. Memristor and spin‐based devices offer natural randomness but depend on hybrid designs involving CMOS peripherals for accelerating SC, which increases area and energy burden. Here, the limitations of existing and emerging technologies are overcome, and a standalone SC architecture embedded in memory and based on 2D memtransistors is experimentally demonstrated. The monolithic and non‐von‐Neumann SC architecture occupies a small hardware footprint and consumes a miniscule amount of energy (<1 nJ) for both s‐bit generation and arithmetic operations, highlighting the benefits of SC.

     
    more » « less
  2. Abstract--Spin switch (SS) is a promising spintronic device which exhibits compactness, low power, non-volatility, input-output isolation leveraging giant spin Hall effect, spin transfer torque, and dipolar coupling. In this paper, we propose a novel device-to-architecture co-design for an in-memory computing platform using coterminous SS (IMCS2), which could simultaneously work as non-volatile memory and reconfigurable in-memory logic (AND/NAND, OR/NOR, and XOR/XNOR) without add-on logic circuits to memory chip. The computed logic output could be simply read out like a normal magnetic random access memory bit cell using the shared memory peripheral circuits. Such intrinsic in-memory logic could be used to process data within memory to greatly reduce power-hungry and long distance data communication in the conventional von Neumann computing system. The IMCS2-based in-memory bulk bitwise Boolean vector operation shows ~9x energy saving and ~3x speedup compared with that of DRAM-based in-memory computing platform. We further employ in-memory multiplication to evaluate the performance of the proposed in-memory computing platform for vector-vector multiplication with different vector sizes. 
    more » « less
  3. Latest algorithmic development has brought competitive classification accuracy for neural networks despite constraining the network parameters to ternary or binary representations. These findings show significant optimization opportunities to replace computationally-intensive convolution operations (based on multiplication) with more efficient and less complex operations such as addition. In hardware implementation domain, processing-in-memory architecture is becoming a promising solution to alleviate enormous energy-hungry data communication between memory and processing units, bringing considerable improvement for system performance and energy efficiency while running such large networks. In this paper, we review several of our recent works regarding Processing-in-Memory (PIM) accelerator based on Magnetic Random Access Memory computational sub-arrays to accelerate the inference mode of quantized neural networks using digital non-volatile memory rather than using analog crossbar operation. In this way, we investigate the performance of two distinct in-memory addition schemes compared to other digital methods based on processing-in-DRAM/GPU/ASIC design to tackle DNN power and memory wall bottleneck. 
    more » « less
  4. Nowadays, research topics on AI accelerator designs have attracted great interest, where accelerating Deep Neural Network (DNN) using Processing-in-Memory (PIM) platforms is an actively-explored direction with great potential. PIM platforms, which simultaneously aims to address power- and memory-wall bottlenecks, have shown orders of performance enhancement in comparison to the conventional computing platforms with Von-Neumann architecture. As one direction of accelerating DNN in PIM, resistive memory array (aka. crossbar) has drawn great research interest owing to its analog current-mode weighted summation operation which intrinsically matches the dominant Multiplication-and-Accumulation (MAC) operation in DNN, making it one of the most promising candidates. An alternative direction for PIM-based DNN acceleration is through bulk bit-wise logic operations directly performed on the content in digital memories. Thanks to the high fault-tolerant characteristic of DNN, the latest algorithmic progression successfully quantized DNN parameters to low bit-width representations, while maintaining competitive accuracy levels. Such DNN quantization techniques essentially convert MAC operation to much simpler addition/subtraction or comparison operations, which can be performed by bulk bit-wise logic operations in a highly parallel fashion. In this paper, we build a comprehensive evaluation framework to quantitatively compare and analyze aforementioned PIM based analog and digital approaches for DNN acceleration. 
    more » « less
  5. Applications involving machine learning and neural networks have become increasingly essential in the AI revolution. Emerging trends in Resistive RAM technologies provide high-speed, low-cost, scalable solutions for such applications. These RRAM cells provide efficient and sophisticated memory hardware structures for machine-learning applications. However, it is difficult to achieve reliable multilevel cell storage capacity in these memory technologies due to the occurrence of soft and hard errors. As these memories can store multi-bits per cell, exploring limited magnitude symbols(multi-bit) error correction in RRAM is important. This paper proposes a new syndrome-based double error correcting code that divides the syndromes into groups and, uses addition and XOR operations to correct double limited magnitude errors in the RRAM cells. The key idea is to use the built-in current summing capability of RRAM cells to perform the addition operations that are used for the error correction thereby greatly reducing the overhead of the decoding logic needed to implement the ECC. This effectively avoids the need for explicit adder hardware in the decoding logic making it smaller and faster than conventional ECC codes with similar error-correcting capability. Experimental results show that the proposed code reduces the number of check symbols and significantly reduces the decoder area and power by using the RRAM cells to perform the addition. 
    more » « less