Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called “computational random-access memory (CRAM),” has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there is a lack of experimental demonstration and study of CRAM to evaluate its computational accuracy, which is a realistic and application-critical metric for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations, as well as 2-, 3-, and 5-input logic operations, are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of models has been developed to characterize the accuracy of CRAM computation. Scalar addition, multiplication, and matrix multiplication, which are essential building blocks for many conventional and machine intelligence applications, are evaluated and show promising accuracy performance. With the confirmation of MTJ-based CRAM’s accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.more » « less
-
Abstract (FGT) has proved to be an interesting van der Waals (vdW) ferromagnetic compound with a tunable Curie temperature ( ). However, the underlying mechanism for varying remains elusive. Here, we systematically investigate and compare low-temperature magnetic properties of single crystalline FGT samples that exhibit s ranging from 160 K to 205 K. Spin stiffness (D) and spin excitation gap (Δ) are extracted using Bloch’s theory for crystals with varying Fe content. Compared to Cr-based vdW ferromagnets, FGT compounds have higher spin stiffness values but lower spin wave excitation gaps. We discuss the implication of these relationships in Fe–Fe ion magnetic interactions in FGT unit cells. The itinerancy of magnetic electrons is measured and discussed under the Rhodes–Wohlfarth ratio (RWR) and the Takahashi theory.more » « less
-
The use of magnetic tunnel junction (MTJ)-based devices constitutes an important basis of modern spintronics. However, the switching layer of an MTJ is widely believed to be an unmodifiable setup, instead of a user-defined option, posing a restriction to the function of spintronic devices. In this study, we realized a reliable electrical control of the switching layer in perpendicular MTJs with 0.1 nm Ir dusting. Specifically, a voltage pulse with a higher amplitude drives the magnetization switching of the MTJ's bottom electrode, while a lower voltage amplitude switches its top electrode. We discussed the origin of this controllability and excluded the possibility of back-hopping. Given the established studies on enhancing the voltage-controlled magnetic anisotropy effect by adopting Ir, we attribute this switching behavior to the significant diffusion of Ir atoms into the top electrode, which is supported by scanning transmission electron microscopy with atomic resolution.more » « less
An official website of the United States government
