skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extract and Characterize Hairpin Vortices in Turbulent Flows
Hairpin vortices are one of the most important vortical structures in turbulent flows. Extracting and characterizing hairpin vortices provides useful insight into many behaviors in turbulent flows. However, hairpin vortices have complex configurations and might be entangled with other vortices, making their extraction difficult. In this work, we introduce a framework to extract and separate hairpin vortices in shear-driven turbulent flows for their study. Our method first extracts general vortical regions with a region-growing strategy based on certain vortex criteria (e.g., $$\lambda_2$$) and then separates those vortices with the help of progressive extraction of ($$\lambda_2$$) iso-surfaces in a top-down fashion. This leads to a hierarchical tree representing the spatial proximity and merging relation of vortices. After separating individual vortices, their shape and orientation information is extracted. Candidate hairpin vortices are identified based on their shape and orientation information as well as their physical characteristics. An interactive visualization system is developed to aid the exploration, classification, and analysis of hairpin vortices based on their geometric and physical attributes. We also present additional use cases of the proposed system for the analysis and study of general vortices in other types of flows.  more » « less
Award ID(s):
2102761
PAR ID:
10526737
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 11
Subject(s) / Keyword(s):
Turbulent flow vortices hairpin vortex extraction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carotid artery diseases, such as atherosclerosis, are a major cause of death in the United States. Wall shear stresses are known to prompt plaque formation, but there is limited understanding of the complex flow structures underlying these stresses and how they differ in a pre-disposed high-risk patient cohort. A ‘healthy’ and a novel ‘pre-disposed’ carotid artery bifurcation model was determined based on patient-averaged clinical data, where the ‘pre-disposed’ model represents a pathological anatomy. Computational fluid dynamic simulations were performed using a physiological flow based on healthy human subjects. A main hairpin vortical structure in the internal carotid artery sinus was observed, which locally increased instantaneous wall shear stress. In the pre-disposed geometry, this vortical structure starts at an earlier instance in the cardiac flow cycle and persists over a much shorter period, where the second half of the cardiac cycle is dominated by perturbed secondary flow structures and vortices. This coincides with weaker favorable axial pressure gradient peaks over the sinus for the ‘pre-disposed’ geometry. The findings reveal a strong correlation between vortical structures and wall shear stress and imply that an intact internal carotid artery sinus hairpin vortical structure has a physiologically beneficial role by increasing local wall shear stresses. The deterioration of this beneficial vortical structure is expected to play a significant role in atherosclerotic plaque formation. 
    more » « less
  2. Experiments were conducted to investigate the use of coherent vortical structures for boundary layer re-energization in a laminar boundary layer. The structures were generated artificially in the form of a hairpin train using a synthetic jet actuator to ensure repeatability for assessing the control. The structures act as a proxy for naturally occurring large-scale motions found in turbulent boundary layers. The hairpin train was controlled by both a static pin and a jet-assisted surface-mounted actuator (JASMA), and the results were captured using particle image velocimetry (PIV). Planar PIV was used to run a parameter study on several actuator strengths, angles, and heights along the domain mid-plane. Stereoscopic PIV measurements conducted downstream were aggregated into a volume of data for further analysis of the control of one particular hairpin train generation case. It was found that both the passive control pin and the active control JASMA contribute turbulent kinetic energy and downwash downstream to increase mixing and momentum injection into the boundary layer. 
    more » « less
  3. Drag for wall-bounded flows is directly related to the spatial flux of spanwise vorticity outward from the wall. In turbulent flows a key contribution to this wall-normal flux arises from nonlinear advection and stretching of vorticity, interpretable as a cascade. We study this process using numerical simulation data of turbulent channel flow at friction Reynolds number$$Re_\tau =1000$$. The net transfer from the wall of spanwise vorticity created by downstream pressure drop is due to two large opposing fluxes, one which is ‘down-gradient’ or outward from the wall, where most vorticity concentrates, and the other which is ‘up-gradient’ or toward the wall and acting against strong viscous diffusion in the near-wall region. We present evidence that the up-gradient/down-gradient transport occurs by a mechanism of correlated inflow/outflow and spanwise vortex stretching/contraction that was proposed by Lighthill. This mechanism is essentially Lagrangian, but we explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence for the mechanism, we study (i) statistical correlations of the wall-normal velocity and of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra identifying eddies involved in nonlinear vorticity transport in the two opposing directions and (iii) visualizations of coherent vortex structures which contribute to the transport. The ‘D-type’ vortices contributing to down-gradient transport in the log layer are found to be attached, hairpin-type vortices. However, the ‘U-type’ vortices contributing to up-gradient transport are detached, wall-parallel, pancake-shaped vortices with strong spanwise vorticity, as expected by Lighthill's mechanism. We discuss modifications to the attached eddy model and implications for turbulent drag reduction. 
    more » « less
  4. The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon. 
    more » « less
  5. Direct numerical simulations of spanwise-rotating turbulent channel flow with a parabolic bump on the bottom wall are employed to investigate the effects of rotation on flow separation. Four rotation rates,$$Ro_b := 2\varOmega H/U_b = \pm 0.42$$,$$\pm$$1.0, are compared with the non-rotating scenario. The mild adverse pressure gradient induced by the lee side of the bump allows for a variable pressure-induced separation. The separation region is reduced (increased) when the bump is on the anti-cyclonic (cyclonic) side of the channel, compared with the non-rotating separation. The total drag is reduced in all rotating cases. Through several mechanisms, rotation alters the onset of separation, reattachment and wake recovery. The mean momentum deficit is found to be the key. A physical interpretation of the ratio between the system rotation and mean shear vorticity,$$S:=\varOmega /\varOmega _s$$, provides the mechanisms regarding stability thresholds$$S=-0.5$$and$$-$$1. The rotation effects are explained accordingly, with reference to the dynamics of several flow structures. For anti-cyclonic separation, particularly, the interaction between the Taylor–Görtler vortices and hairpin vortices of wall-bounded turbulence is proven to be responsible for the breakdown of the separating shear layer. A generalized argument is made regarding the essential role of near-wall deceleration and resultant ejection of enhanced hairpin vortices in destabilizing an anti-cyclonic flow. This mechanism is anticipated to have broad impacts on other applications in analogy to rotating shear flows, such as thermal convection and boundary layers over concave walls. 
    more » « less