skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Correlation between Large-Scale Streamwise Velocity Features and the Height of Coherent Vortices in a Turbulent Boundary Layer
The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon.  more » « less
Award ID(s):
2118209
PAR ID:
10328923
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fluids
Volume:
6
Issue:
8
ISSN:
2311-5521
Page Range / eLocation ID:
286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Analytical wake models provide a computationally efficient means to predict velocity distributions in wind turbine wakes in the atmospheric boundary layer (ABL). Most existing models are developed for neutral atmospheric conditions and correspondingly neglect the effects of buoyancy and Coriolis forces that lead to veer, i.e., changes in the wind direction with height. Both veer and changes in thermal stratification lead to lateral shearing of the wake behind a wind turbine, which affects the power output of downstream turbines. Here we develop an analytical engineering wake model for a wind turbine in yaw in ABL flows including Coriolis and thermal stratification effects. The model combines the new analytical representation of ABL vertical structure based on coupling Ekman and surface layer descriptions developed in Narasimhan et al. [Boundary Layer Meteorol. 190, 16 (2024)] with the vortex sheet-based wake model for yawed turbines proposed in Bastankhah et al. [J. Fluid Mech. 933, A2 (2022)], as well as a new method to predict the wake expansion rate based on the Townsend-Perry logarithmic scaling of streamwise velocity variance. The proposed wake model's predictions show good agreement with large-eddy simulation results, capturing the effects of wind veer and yawing, including the curled and sheared wake structures across various states of the ABL, ranging from neutrally to strongly stably stratified atmospheric conditions. The model significantly improves power loss predictions from wake interactions, especially in strongly stably stratified conditions where wind veer effects dominate. 
    more » « less
  2. The spectral and spatial behavior of the wake of a small cylinder immersed in a turbulent boundary layer at different wall-normal heights is studied and compared to a canonical turbulent boundary layer. Time-resolved particle image velocimetry measurements were taken downstream of the position where the cylinder is immersed. Measurements were also taken in of the unperturbed turbulent boundary layer in the same region without the cylinder for the same freestream velocity. The pre-multiplied energy spectra was computed for the seven cases and compared. Changes to the spectral content of the wake and of the boundary layer were observed for cases where the cylinder was nearer to the wall, while little interaction was observed for cases with the cylinder outside of the boundary layer thickness. Spectral proper orthogonal decomposition modes were calculated at wavelengths relevant to the wake vortex shedding and to the energetic turbulent structures and modifications to the modes were observed for cases with strong interaction. Vortex detection methods were used to visualize the wake and suggested that both a breakdown of periodicity of the vortex spacing and an overall spatial meandering of the wake may be responsible for the spectral modifications observed. 
    more » « less
  3. null (Ed.)
    Abstract Coherent structures are critical for controlling turbulent boundary layers due to their roles in momentum and heat transfer in the flow. Turbulent coherent structures can be detected by measuring wall shear stresses that are footprints of coherent structures. In this study, wall shear stress fluctuations were measured simultaneously in a zero pressure gradient turbulent boundary layer using two house-made wall shear stress probes aligned in the spanwise direction. The wall shear stress probe consisted of two hot-wires on the wall aligned in a V-shaped configuration for measuring streamwise and spanwise shear stresses, and their performance was validated in comparison with a direct numerical simulation result. Relationships between measured wall shear stress fluctuations and streamwise velocity fluctuations were analyzed using conditional sampling techniques. The peak detection method and the variable-interval time-averaging (VITA) method showed that quasi-streamwise vortices were inclined toward the streamwise direction. When events were simultaneously detected by the two probes, stronger fluctuations in streamwise velocity were detected, which suggests that stronger coherent structures were detected. In contrast to the former two methods, the hibernating event detection method detects events with lower wall shear stress fluctuations. The ensemble-averaged mean velocity profile of hibernating events was shifted upward compared to the law of the wall, which suggests low drag status of the coherent structures related with hibernating events. These methods suggest significant correlations between wall shear stress fluctuations and coherent structures, which could motivate flow control strategies to fully exploit these correlations. 
    more » « less
  4. Abstract Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,https://doi.org/10.1175/JAS-D-20-0270.1, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed. 
    more » « less
  5. The interaction of a turbulent, spatially developing crossflow with a transverse jet possesses several engineering and technological applications such as film cooling of turbine blades, exhaust plumes, thrust vector control, fuel injection, etc. Direct Numerical Simulation (DNS) of a jet in a crossflow under different streamwise pressure gradients (zero and favorable pressure gradient) is carried out. The purpose is to study the physics behind the transport phenomena and coherent structure dynamics in turbulent crossflow jets at different streamwise pressure gradients and low/high-velocity ratios (0.5 and 1). The temperature was regarded as a passive scalar with a molecular Prandtl number of 0.71. The analysis is performed by prescribing accurate turbulent information (instantaneous velocity and temperature) at the inlet of a computational domain. The upward motion of low-momentum fluid created by the “legs” of the counter-rotating vortex pair (CVP) encounters the downward inviscid flow coming from outside of the turbulent boundary layer, inducing a stagnation point and a shear layer. This layer is characterized by high levels of turbulent mixing, turbulence production, turbulent kinetic energy (TKE) and thermal fluctuations. The formation and development of the above-mentioned shear layer are more evident at higher velocity ratios. 
    more » « less