Abstract What role does the concept of naturalness play in the development of scientific knowledge and understanding? Whether naturalness is taken to be an ontological dimension of the world or a cognitive dimension of our human perspective within it, assumptions of naturalness seem to frame both concepts and practices that inform the partitioning of parts and the kinding of kinds. Within the natural sciences, knowledge of what something is as well as how it is studied rely on conceptual commitments. These conceptual commitments shape how entities and processes are categorizedasnatural depending on how naturalness has been understood within that discipline. In this paper, I explore how commitments to naturalness shape different conceptualizations of what were previously and what are now considered to be fundamental parts in plant morphology. Relying on an historically informed epistemological approach, I trace the origins and development of models of plant morphology from (1) Goethe’s classical LEAF-ROOT-STEM archetype model; (2) Agnes Arber’s revisions to Goethe’s model reconceived in her partial-shoot theory of the leaf; and (3) Rolf Sattler’s proposal for a processual model of plant morphology. These influential models posit ontologically and epistemologically inconsistent conceptualizations of the natural fundamental parts of plants and how they are related to each other. To explain what this inconsistency means for the concept of naturalness and the role it plays in plant morphology, I suggest naturalness might best be conceived of as a contextually bound classificatory concept that is made and remade through its operationalized use within a model, theory, set of practices, or discipline.
more »
« less
Naturalness in the making: naturalizing naturalness in plant morphology
Abstract: What role, if any, does the concept of naturalness play in the development of scientific knowledge and understanding? Whether naturalness is taken to be an ontological dimension of the world or a cognitive dimension of our human perspective within it, assumptions of naturalness seem to frame concepts and practices that inform the partitioning of parts and the kinding of kinds. Within the natural sciences, knowledge of what something is and how it’s studied rely on conceptual commitments. These conceptual commitments often shape how entities and processes are categorized as natural depending on how naturalness has been understood within that discipline. I explore how commitments to naturalness shaped different incompatible conceptualizations of what were (and in some cases still are) considered to be fundamental parts in plant morphology. Employing an historically informed epistemological approach, I trace the development of three models of plant morphology: Goethe’s LEAF-ROOT-STEM archetype; Agnes Arber’s partial-shoot theory of the leaf; and Rolf Sattler’s processual model of plant morphology. These models are ontologically and epistemologically inconsistent. I explore what this inconsistency means for the concept of naturalness and the role it plays in plant morphology?
more »
« less
- Award ID(s):
- 2240749
- PAR ID:
- 10526863
- Publisher / Repository:
- Australasian Association of Philosophy
- Date Published:
- Format(s):
- Medium: X
- Location:
- Australasian Association of Philosophy (AAP) Conference. University of Western Australia. Perth, Australia.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Schickore, Jutta (Ed.)Ethnobotanical research provides ample justification for comparing diverse biological nomenclatures and exploring ways that retain alternative naming practices. However, how (and whether) comparison of nomenclatures is possible remains a subject of discussion. The comparison of diverse nomenclatural practices introduces a suite of epistemic and ontological difficulties and considerations. Different nomenclatures may depend on whether the communities using them rely on formalized naming conventions; cultural or spiritual valuations; or worldviews. Because of this, some argue that the different naming practices may not be comparable if the ontological commitments employed differ. Comparisons between different nomenclatures cannot assume that either the naming practices or the object to which these names are intended to apply identifies some universally agreed upon object of interest. Investigating this suite of philosophical problems, I explore the role grey nomenclatures play in classification. ‘Grey nomenclatures’ are defined as those that employ names that are either intentionally or accidently non-Linnaean. The classification of the lichen thallus (a symbiont) has been classified outside the Linnaean system by botanists relying on the International Code of Nomenclature for algae, fungi, and plants (ICN). But, I argue, the use of grey names is not isolated and does not occur exclusively within institutionalized naming practices. I suggest, ‘grey names’ also aptly describe nomenclatures employed by indigenous communities such as the Sámi of Northern Finmark, the Sherpa of Nepal, and the Okanagan First Nations. I pay particular attention to how naming practices are employed in these communities; what ontological commitments they hold; for what purposes are these names used; and what anchors the community's nomenclatural practices. Exploring the history of lichen naming and early ethnolichenological research, I then investigate the stakes that must be considered for any attempt to preserve, retain, integrate, or compare the knowledge contained in both academically formalized grey names and indigenous nomenclatures in a way that preserves their source-specific informational content.more » « less
-
Abstract Background and AimsDynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth’s climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes have not yet been systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models. MethodsWe reviewed the scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypic (acclimation) and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio [χ(optimal)] and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally separated responses in these trait combinations to CO2 and humidity. Key ResultsWe identified 17 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypic response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax. ConclusionsWe highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypic and evolutionary response mechanisms.more » « less
-
Delineation between distinct populations of cells is essential for organ development. Boundary formation is necessary for the maintenance of pluripotent meristematic cells in the shoot apical meristem (SAM) and differentiation of developing organs. Boundaries form between the meristem and organs, as well as between organs and within organs. Much of the research into the boundary gene regulatory network (GRN) has been carried out in the eudicot model Arabidopsis thaliana. This work has identified a dynamic network of hormone and gene interactions. Comparisons with other eudicot models, like tomato and pea, have shown key conserved nodes in the GRN and species-specific alterations, including the recruitment of the boundary GRN in leaf margin development. How boundaries are defined in monocots, and in particular the grass family which contains many of the world’s staple food crops, is not clear. In this study, we review knowledge of the grass boundary GRN during vegetative development. We particularly focus on the development of a grass-specific within-organ boundary, the ligule, which directly impacts leaf architecture. We also consider how genome engineering and the use of natural diversity could be leveraged to influence key agronomic traits relative to leaf and plant architecture in the future, which is guided by knowledge of boundary GRNs.more » « less
-
Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X. (Ed.)Learning physics in any context, including undergraduate research experiences (UREs), requires learning its concepts and the relational structure between those new concepts with what students already know. We use concept maps, a knowledge elicitation method, for assessing mentees' and mentors' knowledge structures during Research Experience for Undergraduates programs. The study looked at maps from seven mentor-mentee pairs to understand how mentors and mentees use specific knowledge and strategies during the development of their concept maps. A qualitative analysis of the maps showed mentors and mentees differed in their ways of organizing and displaying their knowledge in terms of structure, scale, language, and use of conceptual and procedural knowledge. For instance, mentees used more procedural knowledge. It is perhaps due to their perception of finishing their REU projects and the fact that they may have only limited and superficial knowledge of specific topics. However, mentors' maps were smaller but more significant in using more comprehensive conceptual knowledge and connecting their maps to the broader scientific context.more » « less