skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Cross Sections for Electron Collisions with N2, N2*, and N2+
Electron collision cross section data are complied from the literature for electron collisions with the nitrogen molecules, N2, N2+, and N2*. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, rotational excitation, vibrational excitation, electronic excitation, dissociative processes, and ionization. The literature has been surveyed up to the end of 2021. For each of these processes, the recommended values of the cross sections are presented.  more » « less
Award ID(s):
2102188 2110279
NSF-PAR ID:
10526876
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Physical and Chemical Reference Data
Volume:
52
Issue:
2
ISSN:
0047-2689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We have measured in the laboratory the far ultraviolet (FUV: 125.0–170.0 nm) cascade-induced spectrum of the Lyman-Birge-Hopfield (LBH) band system (a 1Πg → X 1Σg+) of N2 excited by 30–200 eV electrons. The cascading transition begins with two processes: radiative and collision-induced electronic transitions (CIETs) involving two states (a′ 1Σu− and w 1Δu → a 1Πg), which are followed by a cascade induced transition a 1Πg → X 1Σg+. Direct excitation to the a-state produces a confined LBH spectral glow pattern around an electron beam. We have spatially resolved the electron induced glow pattern from an electron beam colliding with N2 at radial distances of 0–400 mm at three gas pressures. This imaging measurement is the first to isolate spectral measurements in the laboratory of single-scattering electron-impact-induced-fluorescence from two LBH emission processes: direct excitation, which is strongest in emission near the electron beam axis; and cascading-induced, which is dominant far from the electron beam axis. The vibrational populations for vibrational levels from v′=0–2 of the a 1Πg state are enhanced by CIETs, and the emission cross sections of the LBH band system for direct and cascading-induced excitation are provided at 40, 100, and 200 eV 
    more » « less
  2. Cross sections for electron scattering from atomic and molecular iodine are calculated based on the R-matrix (close-coupling) method. Elastic and electronic excitation cross sections are presented for both I and I2. The dissociative electron attachment and vibrational excitation cross sections of the iodine molecule are obtained using the local complex potential approximation. Ionization cross sections are also computed for I2 using the BEB model. 
    more » « less
  3. Abstract We discuss peculiar features of electron scattering on the N 2 molecule and the N 2 + ion, that are important for modeling plasmas, Earth’s and other planets’ atmospheres. These features are, among others: the resonant enhancement of the vibrational excitation in the region of the shape resonance around 2.4 eV, the resonant character of some of electronic excitation channels (and high values of these cross sections, both for triplet and singlet states), high cross section for the dissociation into neutrals, high cross sections for elastic scattering (and electronic transitions) on metastable states. For the N 2 + ion we discuss both dissociation and the dissociative ionization, leading to the formation of atoms in excited states, and dissociative recombination which depends strongly on the initial vibrational state of the ion. We conclude that the theory became an indispensable completion of experiments, predicting many of partial cross sections and their physical features. We hope that the data presented will serve to improve models of nitrogen plasmas and atmospheres. Graphical abstract 
    more » « less
  4. This study presents calculations for cross sections of the vibrational excitation of H2O (X1A1) via electron impact. The theoretical approach employed here is based on first principles only, combining electron-scattering calculations performed using the UK R-matrix codes for several geometries of the target molecule, three-dimensional (3D) vibrational states of H2O, and 3D vibrational frame transformation. The aim is to represent the scattering matrix for the electron incident of the molecule. The vibrational wave functions were obtained numerically, without the normal-mode approximation, so that the interactions and transitions between vibrational states assigned to different normal modes could be accounted for. The thermally averaged rate coefficients were derived from the calculated cross sections for temperatures in the 10–10 000 K interval and analytical fits for rate coefficients were also provided. We assessed the uncertainty estimations of the obtained data for subsequent applications of the rate coefficients in modelling the non-local thermal equilibrium (non-LTE) spectra of water in various astrophysical environments. 
    more » « less
  5. Abstract Cross sections for the vibrational excitation and dissociative recombination (DR) of the C F 3 + ion in collisions with electrons at low scattering energies are computed using a previously-developed approach combining the normal mode approximation for the vibrational states of the target ion and the UK R -matrix code for the evaluation of the scattering matrices at fixed geometries. The obtained cross section for the DR shows excellent agreement with the experimental data from the ASTRID storage ring. Thermally-averaged rate coefficients are obtained from the cross sections for temperatures 10–3000 K. 
    more » « less