skip to main content

This content will become publicly available on December 1, 2022

Title: Electron Scattering Cross-Section Calculations for Atomic and Molecular Iodine
Cross sections for electron scattering from atomic and molecular iodine are calculated based on the R-matrix (close-coupling) method. Elastic and electronic excitation cross sections are presented for both I and I2. The dissociative electron attachment and vibrational excitation cross sections of the iodine molecule are obtained using the local complex potential approximation. Ionization cross sections are also computed for I2 using the BEB model.
; ; ; ; ; ;
Award ID(s):
1834740 2110023 1803844
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. We present evidence of the generation of radical ion formation during the oxidation of iodide on a fluorine doped tin oxide (FTO) electrode in acetonitrile. The cyclic voltammograms for the oxidation of iodide and triiodide on FTO are significantly different as in the case of the oxidation of Pt electrode.  These differences are assigned to kinetic differences on the FTO surface that require significant over potentials to drive the oxidation of iodide and triiodide. We propose that at the highly positive potentials the iodine radical intermediate, I·, becomes thermodynamically stable at FTO. The radical nature of the intermediate was verifiedmore »by the formation of radicals of the usual traps of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 2,2,5,5 tetramethyl-1-pyrroline N-oxide (TMPO) when these were added to an electrolyzed solution. Irradiation of an iodine solution causes the homolytic cleavage of I2 and yields the same radical intermediate with TMPO as in the electrolysis experiment. Similar results were obtained from the electrolysis of bromide solutions upon addition of TMPO. Short term electrolysis (< 1 h) gives triiodide as a final product while long-term electrolysis (> 17 h) yields additional byproducts. Byproducts were determined to be organoiodines by gas chromatography-mass spectrometry (GC-MS). Overall, our results are consistent with iodine atoms reacting with the electrolyte during electrolysis at the FTO electrode and with a sequential two-electron transfer process.« less
  2. We probe the low-energy electron collisions with methyl formate HCOOCH 3 , focusing on its resonant states. Experimentally, we (i) use two-dimensional electron energy loss spectroscopy to gain information about the vibrational excitation and (ii) report the absolute dissociative electron attachment cross sections. The electron scattering spectra reveal both the threshold effects due to the long-range electron–molecule interaction and a pronounced π* resonance centered around 2.1 eV. This resonance gives rise to dissociative electron attachment into three different anionic channels, the strongest one being the production of the formate anion. Theoretically, we characterize this resonant state using the complex absorbingmore »potential approach combined with multistate multireference perturbation theory, which predicts its position and width in excellent agreement with the experiment.« less
  3. We have analyzed medium-resolution (FWHM = 1.2 nm) Middle UltraViolet (MUV; 180–280 nm) laboratory emission spectra of CO excited by electron impact at 15, 20, 40, 50, and 100 eV under single-scattering conditions at 300 K. The MUV emission spectra at 100 eV contain the Cameron Bands (CB) CO(a 3Π → X 1Σ+), the Fourth Positive Group (4PG) CO(A 1Π → X 1Σ+), and the First Negative Group (1NG) CO+(B 2Σ+ → X 2Σ) from direct excitation and cascading-induced emission of an optically-thin CO gas. We have determined vibrational intensities and emission cross sections for these systems, which are importantmore »for modeling UV observations of the atmospheres of Mars and Venus. We have also measured the CB ‘glow’ profile about the electron beam of the long-lived CO (a 3Π) state and determined its average metastable lifetime of approximately 3 ± 1 ms. Optically-allowed cascading from a host of triplet states has been found to be the dominant excitation process contributing to the CB emission cross section at 15 eV, most strongly by the d 3Δ and a' 3Σ+ electronic states. We normalized the CB emission cross section at 15 eV electron impact energy by Multi-Linear Regression (MLR) analysis to the blended 15 eV MUV spectrum over the spectral range of 180–280 nm, based on the 4PG emission cross section at 15 eV that we have previously measured (Ajello et al., 2019). We find the Cameron band total emission cross section at 15 eV to be (7.65 ± 2.68) × 10−17 cm2.« less
  4. The time-dependent close-coupling method has been recently applied to calculate electron impact direct ionization cross sections for the Kr, W, and Pb atoms. An overview is presented for these three heavy neutral atom systems. When the direct ionization cross sections are combined with excitation-autoionization cross sections, the total ionization cross sections were found to be in reasonable agreement with crossed-beams measurements for Kr and Pb.
  5. We have measured in the laboratory the far ultraviolet (FUV: 125.0–170.0 nm) cascade-induced spectrum of the Lyman-Birge-Hopfield (LBH) band system (a 1Πg → X 1Σg+) of N2 excited by 30–200 eV electrons. The cascading transition begins with two processes: radiative and collision-induced electronic transitions (CIETs) involving two states (a′ 1Σu− and w 1Δu → a 1Πg), which are followed by a cascade induced transition a 1Πg → X 1Σg+. Direct excitation to the a-state produces a confined LBH spectral glow pattern around an electron beam. We have spatially resolved the electron induced glow pattern from an electron beam colliding withmore »N2 at radial distances of 0–400 mm at three gas pressures. This imaging measurement is the first to isolate spectral measurements in the laboratory of single-scattering electron-impact-induced-fluorescence from two LBH emission processes: direct excitation, which is strongest in emission near the electron beam axis; and cascading-induced, which is dominant far from the electron beam axis. The vibrational populations for vibrational levels from v′=0–2 of the a 1Πg state are enhanced by CIETs, and the emission cross sections of the LBH band system for direct and cascading-induced excitation are provided at 40, 100, and 200 eV« less