skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flash-pyrolyzed coal char as a high-performance anode for sodium-ion batteries
This work explores a novel approach for improving the sodium-ion battery performance of coal char using flash pyrolysis and an ether-based electrolyte. Coal char is an ultra-low cost hard carbon with promising application as an anode material in sodium-ion batteries. During flash pyrolysis, char is heated at 1000 °C/s in a drop-tube furnace to create a highly-irregular structure. The larger d-spacing and smaller closed micropore diameter of flash-pyrolyzed char increases anode capacity compared to traditional slow-pyrolyzed char electrodes. The sodium-ion battery anode performance of flash-pyrolyzed char is further improved using an ether-based electrolyte in place of the traditional ester-based electrolyte. Performance improvements include greater initial Coulombic efficiency (58% in ester- vs. 64% in ether-based electrolyte) and improved specific capacity in an ether-based electrolyte. Overall, the combination of flash pyrolysis and ether-based electrolyte increases the sodium-ion battery discharge capacity of coal char by over 50%, from 72.5 mAh g−1 (slow-pyrolyzed char in ester-based electrolyte) to 109.4 mAh g−1 (flash-pyrolyzed char in ether-based electrolyte) (50 mA g−1 discharge rate). The results highlight improvements that can be realized through flash pyrolysis of coal char for battery applications and the numerous processing advantages of flash vs. slow pyrolysis.  more » « less
Award ID(s):
2152562
PAR ID:
10526952
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fuel Processing Technology
Volume:
252
Issue:
C
ISSN:
0378-3820
Page Range / eLocation ID:
107998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A dual‐layer interphase that consists of an in‐situ‐formed lithium carboxylate organic layer and a thin BF3‐doped monolayer Ti3C2MXene on Li metal is reported. The honeycomb‐structured organic layer increases the wetting of electrolyte, leading to a thin solid electrolyte interface (SEI). While the BF3‐doped monolayer MXene provides abundant active sites for lithium homogeneous nucleation and growth, resulting in about 50% reduced thickness of inorganic‐rich components among the SEI layer. A low overpotential of less than 30 mV over 1000 h cycling in symmetric cells is received. The functional BF3 groups, along with the excellent electronic conductivity and smooth surface of the MXene, greatly reduce the lithium plating/stripping energy barrier, enabling a dendrite‐free lithium‐metal anode. The battery with this dual‐layer coated lithium metal as the anode displays greatly improved electrochemical performance. A high capacity‐retention of 175.4 mAh g−1at 1.0 C is achieved after 350 cycles. In a pouch cell with a capacity of 475 mAh, the battery still exhibits a high discharge capacity of 165.6 mAh g−1with a capacity retention of 90.2% after 200 cycles. In contrast to the fast capacity decay of pure Li metal, the battery using NCA as the cathode also displays excellent capacity retention in both coin and pouch cells. The dual‐layer modified surface provides an effective approach in stabilizing the Li‐metal anode. 
    more » « less
  2. ABSTRACT This study reports a high-performance tin (Sn)-coated vertically aligned carbon nanofiber array anode for lithium-ion batteries. The array electrodes have been prepared by coaxial sputter-coating of tin (Sn) shells on vertically aligned carbon nanofiber (VACNF) cores. The robust brush-like highly conductive VACNFs effectively connect high-capacity Sn shells for lithium-ion storage. A high specific capacity of 815 mAh g -1 of Sn was obtained at C/20 rate, reaching toward the maximum value of Sn. However, the electrode shows poor cycling performance with conventional LiPF 6 based organic electrolyte. The addition of fluoroethylene carbonate (FEC) improve the performance significantly and the Sn-coated VACNFs anode shows stable cycling performance. The Sn-coated VACNF array anodes exhibit outstanding capacity retention in the half-cell tests with electrolyte containing 10 wt.% FEC and could deliver a reversible capacity of 480 mAh g -1 after 50 cycles at C/3 rate. 
    more » « less
  3. Cobalt telluride anchored to nitrogen-rich carbon dodecahedra (CoTe@NCD) was synthesized by simultaneous pyrolysis-tellurium melt impregnation of ZIF-67 MOFs. The purely thermal method involved no secondary chemicals and no waste byproducts. The result is a microstructure consisting of nanoscale 86 wt% CoTe intermetallic nanoparticles contained within a thin N-rich carbon matrix. During electrochemical cycling, the 21 nm average diameter CoTe provides short diffusion paths for Na + /K + ions, which in conjunction with the electrically conducting carbon matrix allow for rapid potassiation or sodiation. As potassium ion battery (PIB and KIB) and sodium ion battery (NIB and SIB) anodes, CoTe@NCD demonstrates attractive reversible capacity, promising cycling stability, and state-of-the-art rate performance. For example, as a KIB anode, the CoTe@NCD electrode exhibits a reversible capacity of 380 mA h g −1 at 50 mA g −1 and a fast charge capacity of 136 mA h g −1 at 1000 mA g −1 . As a NIB anode, it also displays excellent rate capability achieving 620 mA h g −1 at 50 mA g −1 and 345 mA h g −1 at 1000 mA g −1 . 
    more » « less
  4. Tin antimonide (SnSb) is a promising alloying anode for sodium-ion batteries due to its high theoretical capacity and relative stability. The material is popular in the battery field, but, to our knowledge, few studies have been conducted on the influence of altering Sn and Sb stoichiometry on anode capacity retention and efficiency over time. Here, Sn-Sb electrodes were synthesized with compositional control by optimizing electrodeposition parameters and stoichiometry in solution and the alloys were cycled in sodium-ion half-cells to investigate the effects of stoichiometry on both performance and electrochemical phenomena. Higher concentrations of antimony deposited into the films were found to best maintain specific capacity over 270 cycles in the tin-antimony alloys, with each cell showing a slow, gradual decrease in capacity. We identified that a 1:3 ratio of Sn:Sb retained a specific capacity of 486 mAh g−1after 270 cycles, highlighting a need to explore this material further. These results demonstrate how control over stoichiometry in Sn-Sb electrodes is a viable method for tuning performance. 
    more » « less
  5. Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon-based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh g−1at 0.05 A g−1, rate capability up to 86 mAh g−1at 3500 mA g−1, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. Cyclic voltammetry studies indicated that the storage process was diffusion-limited, with diffusion coefficient of 8.62 × 10−8cm2s−1. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries. 
    more » « less