skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Decomposition Analysis With Time-Varying Mediators: Designing Individualized Interventions to Reduce Social Disparities
Causal decomposition analysis aims to identify risk factors (referred to as “mediators”) that contribute to social disparities in an outcome. Despite promising developments in causal decomposition analysis, current methods are limited to addressing a time-fixed mediator and outcome only, which has restricted our understanding of the causal mechanisms underlying social disparities. In particular, existing approaches largely overlook individual characteristics when designing (hypothetical) interventions to reduce disparities. To address this issue, we extend current longitudinal mediation approaches to the context of disparities research. Specifically, we develop a novel decomposition analysis method that addresses individual characteristics by (a) using optimal dynamic treatment regimes (DTRs) and (b) conditioning on a selective set of individual characteristics. Incorporating optimal DTRs into the design of interventions can be used to strike a balance between equity (reducing disparities) and excellence (improving individuals’ outcomes). We illustrate the proposed method using the High School Longitudinal Study data.  more » « less
Award ID(s):
2243119
PAR ID:
10526957
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Sociological Methods & Research
ISSN:
0049-1241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Disparities in health or well‐being experienced by minority groups can be difficult to study using the traditional exposure‐outcome paradigm in causal inference, since potential outcomes in variables such as race or sexual minority status are challenging to interpret. Causal decomposition analysis addresses this gap by positing causal effects on disparities under interventions to other intervenable exposures that may play a mediating role in the disparity. While invoking weaker assumptions than causal mediation approaches, decomposition analyses are often conducted in observational settings and require uncheckable assumptions that eliminate unmeasured confounders. Leveraging the marginal sensitivity model, we develop a sensitivity analysis for weighted causal decomposition estimators and use the percentile bootstrap to construct valid confidence intervals for causal effects on disparities. We also propose a two‐parameter reformulation that enhances interpretability and facilitates an intuitive understanding of the plausibility of unmeasured confounders and their effects. We illustrate our framework on a study examining the effect of parental support on disparities in suicidal ideation among sexual minority youth. We find that the effect is small and sensitive to unmeasured confounding, suggesting that further screening studies are needed to identify mitigating interventions in this vulnerable population. 
    more » « less
  2. Causal decomposition analysis is among the rapidly growing number of tools for identifying factors (“mediators”) that contribute to disparities in outcomes between social groups. An example of such mediators is college completion, which explains later health disparities between Black women and White men. The goal is to quantify how much a disparity would be reduced (or remain) if we hypothetically intervened to set the mediator distribution equal across social groups. Despite increasing interest in estimating disparity reduction and the disparity that remains, various estimation procedures are not straightforward, and researchers have scant guidance for choosing an optimal method. In this article, the authors evaluate the performance in terms of bias, variance, and coverage of three approaches that use different modeling strategies: (1) regression-based methods that impose restrictive modeling assumptions (e.g., linearity) and (2) weighting-based and (3) imputation-based methods that rely on the observed distribution of variables. The authors find a trade-off between the modeling assumptions required in the method and its performance. In terms of performance, regression-based methods operate best as long as the restrictive assumption of linearity is met. Methods relying on mediator models without imposing any modeling assumptions are sensitive to the ratio of the group-mediator association to the mediator-outcome association. These results highlight the importance of selecting an appropriate estimation procedure considering the data at hand. 
    more » « less
  3. The underrepresentation of women in science, technology, engineering and mathematics (STEM) fields has been a subject of extensive research and policy debate. However, there is limited clarity regarding the specific mechanisms that generate these disparities, and which interventions are most effective in reducing the gap. In this study, we use causal decomposition analysis to estimate how the gender gap in STEM participation would change if we were to intervene on women’s self-efficacy beliefs in mathematics. Women tend to underestimate their abilities in math-related fields, which can affect their educational and career choices. The question we ask is to what extent the gender gap in individuals’ enrollment in STEM majors and identification with mathematics would be reduced if self-efficacy in mathematics were set to be equal across gender categories. The results suggest that equalizing this target factor will reduce the observed disparities in math identity by 53%, and in the enrollment of STEM majors by 2.5%. The modest influence of self-efficacy on enrollment disparities suggests that it is not the predominant factor. We discuss the implications of our empirical findings, as well as how causal decomposition analysis can benefit social and behavioral disparities research. 
    more » « less
  4. Mathematics literacy is crucial in many STEM fields, yet Black and Hispanic students are less likely to achieve high math proficiency. While previous literature investigated potential factors to mitigate racial or gendered disparities in mathematics literacy, few studies attended to the conditions under which the causal interpretation of the results obtained can be established. Guided by intersectionality theory and causal decomposition analysis, we examined the degree to which disparities in mathematics literacy (a) exist at the intersection of race and gender and (b) can be reduced by hypothetical interventions that equalize school socioeconomic status (SES) or opportunity to learn (OTL) across groups. We found large racial/ethnic differences in math literacy favoring Asians and whites and much smaller gender differences. We also found that equalizing school SES may reduce disparities for Black and Hispanic males and females; equalizing OTL may reduce disparities for Black and Hispanic males as well as Asian males and females; compared to white males. Our findings suggest that interventions that target specific race–gender groups are required to reduce disparities in math literacy. 
    more » « less
  5. A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the “impact remediation framework,” is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality. 
    more » « less