skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards solving psychology’s fundamental problem
The problem driving this debate issue is old, going back to at least to the 17th century. Yet, psychologists are no closer to solving the problem now than they were centuries ago. In this article I argue that the reason for the lack of definitive solution is that disputants share assumptions that make the problem unsolvable. More specifically, the problem is based on the assumptions that (a) the knowledge field of psychology is coherent and (b) natural scientists employ a common inquiry approach. Both are troublesome. As such, instead of asking questions such as “Should psychologists follow the natural sciences?” it would be much more meaningful to ask questions such as “What does it look like for psychologists in this subfield to follow a scientific approach?”  more » « less
Award ID(s):
1920730
PAR ID:
10526970
Author(s) / Creator(s):
 
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Theory & Psychology
Volume:
34
Issue:
3
ISSN:
0959-3543
Format(s):
Medium: X Size: p. 362-376
Size(s):
p. 362-376
Sponsoring Org:
National Science Foundation
More Like this
  1. Cryptography is largely based on unproven assumptions, which, while believable, might fail. Notably if P=NP, or if we live in Pessiland, then all current cryptographic assumptions will be broken. A compelling question is if any interesting cryptography might exist in Pessiland. A natural approach to tackle this question is to base cryptography on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and Vasudevan [BRSV’17] attempted this, starting from popular hardness assumptions, such as the Orthogonal Vectors (OV) Conjecture. They obtained problems that are hard on average, assuming that OV and other problems are hard in the worst case. They obtained proofs of work, and hoped to use their average-case hard problems to build a fine-grained one-way function. Unfortunately, they proved that constructing one using their approach would violate a popular hardness hypothesis. This motivates the search for other fine-grained average-case hard problems. The main goal of this paper is to identify sufficient properties for a fine-grained average-case assumption that imply cryptographic primitives such as fine-grained public key cryptography (PKC). Our main contribution is a novel construction of a cryptographic key exchange, together with the definition of a small number of relatively weak structural properties, such that if a computational problem satisfies them, our key exchange has provable fine-grained security guarantees, based on the hardness of this problem. We then show that a natural and plausible average-case assumption for the key problem Zero-k-Clique from fine-grained complexity satisfies our properties. We also develop fine-grained one-way functions and hardcore bits even under these weaker assumptions. Where previous works had to assume random oracles or the existence of strong one-way functions to get a key-exchange computable in O(n) time secure against O(n^2) time adversaries (see [Merkle’78] and [BGI’08]), our assumptions seem much weaker. Our key exchange has a similar gap between the computation of the honest party and the adversary as prior work, while being non-interactive, implying fine-grained PKC. 
    more » « less
  2. Abstract Extracting an individual's scientific knowledge is essential for improving educational assessment and understanding cognitive tasks in engineering activities such as reasoning and decision making. However, knowledge extraction is an almost impossible endeavor if the domain of knowledge and the available observational data are unrestricted. The objective of this paper is to quantify individuals' theory-based causal knowledge from their responses to given questions. Our approach uses directed acyclic graphs (DAGs) to represent causal knowledge for a given theory and a graph-based logistic model that maps individuals' question-specific subgraphs to question responses. We follow a hierarchical Bayesian approach to estimate individuals' DAGs from observations.The method is illustrated using 205 engineering students' responses to questions on fatigue analysis in mechanical parts. In our results, we demonstrate how the developed methodology provides estimates of population-level DAG and DAGs for individual students. This dual representation is essential for remediation since it allows us to identify parts of a theory that a population or individual struggles with and parts they have already mastered. An addendum of the method is that it enables predictions about individuals' responses to new questions based on the inferred individual-specific DAGs. The latter has implications for the descriptive modeling of human problem-solving, a critical ingredient in sociotechnical systems modeling. 
    more » « less
  3. Abstract BackgroundTeachers often rely on the use of open‐ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through more close‐ended problem types. While these types of problems are valuable to teachers, the variation in student responses to these questions makes it difficult, and time‐consuming, to evaluate and provide directed feedback. It is a well‐studied concept that feedback, both in terms of a numeric score but more importantly in the form of teacher‐authored comments, can help guide students as to how to improve, leading to increased learning. It is for this reason that teachers need better support not only for assessing students' work but also in providing meaningful and directed feedback to students. ObjectivesIn this paper, we seek to develop, evaluate, and examine machine learning models that support automated open response assessment and feedback. MethodsWe build upon the prior research in the automatic assessment of student responses to open‐ended problems and introduce a novel approach that leverages student log data combined with machine learning and natural language processing methods. Utilizing sentence‐level semantic representations of student responses to open‐ended questions, we propose a collaborative filtering‐based approach to both predict student scores as well as recommend appropriate feedback messages for teachers to send to their students. Results and ConclusionWe find that our method outperforms previously published benchmarks across three different metrics for the task of predicting student performance. Through an error analysis, we identify several areas where future works may be able to improve upon our approach. 
    more » « less
  4. Recent advances in DNA sequencing technology and DNA storage systems have rekindled the interest in deletion channels. Multiple recent works have looked at variants of sequence reconstruction over a single and over multiple deletion channels, a notoriously difficult problem due to its highly combinatorial nature. Although works in theoretical computer science have provided algorithms which guarantee perfect reconstruction with multiple independent observations from the deletion channel, they are only applicable in the large blocklength regime and more restrictively, when the number of observations is also large. Indeed, with only a few observations, perfect reconstruction of the input sequence may not even be possible in most cases. In such situations, maximum likelihood (ML) and maximum aposteriori (MAP) estimates for the deletion channels are natural questions that arise and these have remained open to the best of our knowledge. In this work, we take steps to answer the two aforementioned questions. Specifically: 1. We show that solving for the ML estimate over the single deletion channel (which can be cast as a discrete optimization problem) is equivalent to solving its relaxation, a continuous optimization problem; 2. We exactly compute the symbolwise posterior distributions (under some assumptions on the priors) for both the single as well as multiple deletion channels. As part of our contributions, we also introduce tools to visualize and analyze error events, which we believe could be useful in other related problems concerning deletion channels. 
    more » « less
  5. null (Ed.)
    The availability of quality information in bug reports that are created daily by software users is key to rapidly fixing software faults. Improving incomplete or deficient bug reports, which are numerous in many popular and actively developed open source software projects, can make software maintenance more effective and improve software quality. In this paper, we propose a system that addresses the problem of bug report incompleteness by automatically posing follow-up questions, intended to elicit answers that add value and provide missing information to a bug report. Our system is based on selecting follow-up questions from a large corpus of already posted follow-up questions on GitHub. To estimate the best follow-up question for a specific deficient bug report we combine two metrics based on: 1) the compatibility of a follow-up question to a specific bug report; and 2) the utility the expected answer to the follow-up question would provide to the deficient bug report. Evaluation of our system, based on a manually annotated held-out data set, indicates improved performance over a set of simple and ablation baselines. A survey of software developers confirms the held-out set evaluation result that about half of the selected follow-up questions are considered valid. The survey also indicates that the valid follow-up questions are useful and can provide new information to a bug report most of the time, and are specific to a bug report some of the time. 
    more » « less