skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Offset of M54 from the Sagittarius dwarf spheroidal galaxy
ABSTRACT We present results from simultaneous modelling of 2D (projected along the line of sight) position, proper motion, and line-of-sight velocity for Gaia- and Apache Point Observatory Galactic Evolution Experiment (APOGEE)-observed stars near the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. We use a mixture model that allows for independent sub-populations contributed by the Sgr galaxy, its nuclear star cluster Messier 54 (M54), and the Milky Way foreground. We find an offset of $$0.295\pm 0.029$$ deg between the inferred centroids of Sgr and M54, corresponding to a (projected) physical separation of $$0.135\pm 0.013$$ kpc. The detected offset might plausibly be driven by unmodelled asymmetry in Sgr’s stellar configuration; however, standard criteria for model selection favour our symmetric model over an alternative that allows for bilateral asymmetry. We infer an offset between the proper motion centres of Sgr and M54 of $$[\Delta \mu _{\alpha }\cos \delta ,\Delta \mu _{\delta }]=[4.9, -19.7] \pm [6.8, 6.2] \ \mu \mathrm{ as}\,\mathrm{ yr}^{-1}$$ ($$[0.61, -2.46] \pm [0.85, 0.77] \ \mathrm{ km}\,\mathrm{ s}^{-1}$$), with magnitude similar to the covariance expected due to spatially correlated systematic error. We infer an offset of $$4.1\pm 1.2 \ \mathrm{ km}\,\mathrm{ s}^{-1}$$ in line-of-sight velocity. Using inferred values for the systemic positions and motions of Sgr and M54 as initial conditions, we calculate the recent orbital history of a simplified Sgr/M54 system, which we demonstrate to be sensitive to any line-of-sight distance offset between M54 and Sgr, and to the distribution of dark matter within Sgr.  more » « less
Award ID(s):
2206046 1909584
PAR ID:
10527012
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3713-3728
Size(s):
p. 3713-3728
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $$\langle T \rangle =(2\pm 1) \times 10^4\,$$K and modest non-thermal broadening of $$\langle b_\mathrm{nt} \rangle =5\pm 3\,$$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $$160^{+140}_{-50}$$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $$N\mathrm{(H\, {\small I})}$$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $$\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  2. Abstract Delta (δ) sunspots sometimes host fast photospheric flows along the central magnetic polarity inversion line (PIL). Here we study the strong Doppler shift signature in the central penumbral light bridge of solar active region NOAA 12673. Observations from the Helioseismic and Magnetic Imager (HMI) indicate highly sheared and strong magnetic fields. Large Doppler shifts up to 3.2 km s−1appeared during the formation of the light bridge and persisted for about 16 hr. A new velocity estimator, called DAVE4VMwDV, reveals fast converging and shearing motion along the PIL from HMI vector magnetograms, and recovers the observed Doppler signal much better than an old version of the algorithm. The inferred velocity vectors are largely (anti-)parallel to the inclined magnetic fields, suggesting that the observed Doppler shift contains a significant contribution from the projected field-aligned flows. High-resolution observations from the Hinode/Spectro-Polarimeter further exhibit a clear correlation between the Doppler velocity and the cosine of the magnetic inclination, which is in agreement with HMI results and consistent with a field-aligned flow of about 9.6 km s−1. The complex Stokes profiles suggest significant gradients of physical variables along the line of sight. We discuss the implications on theδ-spot magnetic structure and the flow-driving mechanism. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $$\rm{H\,{\small I}}$$\rm Ly\,\alpha$$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $$\rm{H\,{\small I}}$$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $$\rm{H\,{\small I}}$$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$$^{-1}\,$$ dominate the kinematics of circumgalactic $$\rm{H\,{\small I}}$$ out to Dtran ≃ 50 kpc, while $$\rm{H\,{\small I}}$$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $$\rm{H\,{\small I}}$$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $$\rm Ly\,\alpha$$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion. 
    more » « less
  4. ABSTRACT We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $$296.0_{-3.3}^{+3.8} \rm ~ d$$, semimajor axis $$1.12^{+0.41}_{-0.24}\rm ~au$$, and systemic velocity $$-380.0 \pm 1.7 \rm ~km ~s^{-1}$$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $$\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$$. 
    more » « less
  5. Abstract Infrared observations of stellar orbits about Sgr A* probe the mass distribution in the inner parsec of the Galaxy and provide definitive evidence for the existence of a massive black hole. However, the infrared astrometry is relative and is tied to the radio emission from Sgr A* using stellar SiO masers that coincide with infrared-bright stars. To support and improve this two-step astrometry, we present new astrometric observations of 15 stellar SiO masers within 2 pc of Sgr A*. Combined with legacy observations spanning 25.8 yr, we reanalyze the relative offsets of these masers from Sgr A* and measure positions and proper motions that are significantly improved compared to the previously published reference frame. Maser positions are corrected for epoch-specific differential aberration, precession, nutation, and solar gravitational deflection. Omitting the supergiant IRS 7, the mean position uncertainties are 0.46 mas and 0.84 mas in R.A. and decl., and the mean proper motion uncertainties are 0.07 mas yr−1and 0.12 mas yr−1, respectively. At a distance of 8.2 kpc, these correspond to position uncertainties of 3.7 and 6.9 au and proper motion uncertainties of 2.7 and 4.6 km s−1. The reference frame stability, the uncertainty in the variance-weighted mean proper motion of the maser ensemble, is 8μas yr−1(0.30 km s−1) in R.A. and 11μas yr−1(0.44 km s−1) in decl., which represents a 2.3-fold improvement over previous work and a new benchmark for the maser-based reference frame. 
    more » « less