skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Non-Clinical Tomography Users Research Network (NoCTURN): Who We Are and What We Are Trying to Accomplish
The Non-Clinical Tomography Users Research Network (NoCTURN) was established in 2022 to advance Findability, Accessibility, Interoperability, and Reuse (FAIR) and Open Science (OS) practices in the computed tomographic (CT) imaging community. CT specialists utilize a shared pipeline to create digital representations of real-world objects for research, education, and outreach, and we face a shared set of challenges and limitations imposed by siloing of current workflows, best practices, and expertise. Mirroring the U.S. National Science Foundation’s “10 Big Ideas” of Convergence Research (2016), and in consideration of the White House Office of Science and Technology Policy's Nelson Memorandum (2020), NoCTURN is leveraging input from a broad community of more than 100 CT educators, researchers, curators, and industry stakeholders to propose improvements to data handling, management, and sharing that cut across scientific disciplines and extend beyond. Our primary goal is to develop practical recommendations and tools that link today's CT data to tomorrow's CT discoveries. NoCTURN is working toward this goal by providing a platform to: 1) engage the international scientific CT community via participant recruitment from imaging facilities, academic departments and museums, and data repositories across the globe; 2) stimulate improvements for CT imaging and data management standards that focus on FAIR and OS principles; and 3) work directly with private companies that manufacture the hardware and software used in CT imaging, visualization, and analysis to find common ground in documentation and interoperability that better reflects the OS standards championed by federal funding agencies. The planned deliverables from this three-year grant include a ‘Rosetta Stone’ for CT terminology, an interactive world map of CT facilities, a guide to CT repositories, and ‘Good, Better, Best’ guidelines for metadata and long-term data management. We aim to reduce the barriers to entry that isolate individuals and research labs, and we anticipate that developing community standards and improving methodological reporting will enable long-term, systemic changes necessary to aid those at all levels of experience in furthering their access to and use of CT imaging.  more » « less
Award ID(s):
2226186
PAR ID:
10527017
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ICTMS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital publishing platforms and internet resources enable openness of access to scientific findings and data at scales never before realized. Unfortunately, researchers sometimes embrace lock-in systems for data generation and analysis out of necessity because meaningful alternatives do not exist. Scientific advances still take place when this occurs, but they become fragmented with discordant quality control, interoperability, reproducibility, and democratization of access. To maximize the value of these—often—publicly funded resources, disciplines are turning to FAIR Guiding Principles for data stewardship. FAIR (Findability, Accessibility, Interoperability, and Reuse) promotes the added value of widespread data sharing that is transparent, equitable, and inclusive. Here we present NoCTURN, an NSF-funded FAIR Open Science Research Coordination Network for computed tomography users. NoCTURN (the Non-clinical Computed Tomography Users Research Network) aims to address the fragmentation of tomography toolkits stemming from proprietary software, non-uniform metadata formats, and repeatability limits. In this presentation, we outline how we will achieve this aim together by 1) developing a community committed to information sharing; 2) coordinating data analysis, storage, and reporting requirements; 3) highlighting underrepresented voices in the field; 4) developing community standards inclusive of industry, research, education, and outreach stake-holders; and 5) modeling FAIR open science strategies for our colleagues and students. NoCTURN is recruiting undergraduates through established investigators from X-ray-, neutron-, and synchrotron-beam computed tomography communities—and we want to hear from you. 
    more » « less
  2. Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives. 
    more » « less
  3. Oceanography is inherently an interdisciplinary science capable of producing highly complex, heterogeneous data that pose unique challenges for data management and reuse. Evolving instrumentation and new research methodologies are increasingly taxing current strategies and technologies for management and reuse of data. Data-related publisher and funder requirements are relatively new demands that researchers must learn to navigate. These are just some of the stressors that repositories experience in their role of curating and publishing FAIR marine-related data. In response, oceanographic repositories are adapting by leveraging community data standards, engaging in the development of new technologies and the usage of novel tools to improve data discovery and interoperability. Additionally, they are collaborating with data-related stakeholders to help shape data-related policy, and fill an education role to promote good data hygiene and bring awareness of concepts like FAIR to the oceanographic research community. This presentation will highlight some of the activities of the BCO-DMO repository that are aimed at advancing the availability and reuse of Open oceanographic data. 
    more » « less
  4. Abstract Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains. This article is categorized under:Science of Water > Methods 
    more » « less
  5. AbstractManaging, processing, and sharing research data and experimental context produced on modern scientific instrumentation all present challenges to the materials research community. To address these issues, two MaRDA Working Groups on FAIR Data in Materials Microscopy Metadata and Materials Laboratory Information Management Systems (LIMS) convened and generated recommended best practices regarding data handling in the materials research community. Overall, the Microscopy Metadata Group recommends (1) instruments should capture comprehensive metadata about operators, specimens/samples, instrument conditions, and data formation; and (2) microscopy data and metadata should use standardized vocabularies and community standard identifiers. The LIMS Group produced the following guides and recommendations: (1) a cost and benefit comparison when implementing LIMS; (2) summaries of prerequisite requirements, capabilities, and roles of LIMS stakeholders; and (3) a review of metadata schemas and information-storage best practices in LIMS. Together, the groups hope these recommendations will accelerate breakthrough scientific discoveries via FAIR data. Impact statementWith the deluge of data produced in today’s materials research laboratories, it is critical that researchers stay abreast of developments in modern research data management, particularly as it relates to the international effort to make data more FAIR – findable, accessible, interoperable, and reusable. Most crucially, being able to responsibly share research data is a foundational means to increase progress on the materials research problems of high importance to science and society. Operational data management and accessibility are pivotal in accelerating innovation in materials science and engineering and to address mounting challenges facing our world, but the materials research community generally lags behind its cognate disciplines in these areas. To address this issue, the Materials Research Coordination Network (MaRCN) convened two working groups comprised of experts from across the materials data landscape in order to make recommendations to the community related to improvements in materials microscopy metadata standards and the use of Laboratory Information Management Systems (LIMS) in materials research. This manuscript contains a set of recommendations from the working groups and reflects the culmination of their 18-month efforts, with the hope of promoting discussion and reflection within the broader materials research community in these areas. Graphical abstract 
    more » « less