The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERN 
                        more » 
                        « less   
                    
                            
                            Measurement of the branching fraction of the decay B−→D0ρ(770)− at Belle II
                        
                    
    
            We measure the branching fraction of the decay using data collected with the Belle II detector. The data contain 387 million pairs produced in collisions at the resonance. We reconstruct decays from an analysis of the distributions of the energy and the helicity angle. We determine the branching fraction to be , in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two. Published by the American Physical Society2024 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209481
- PAR ID:
- 10527131
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- https://doi.org/10.1103/PhysRevD.109.L111103
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 109
- Issue:
- 11
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We search for the rare decay in a sample of electron-positron collisions at the resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying meson in events to suppress background from other decays of the signal candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the branching fraction of and , respectively. Combining the results, we determine the branching fraction of the decay to be , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024more » « less
- 
            The ratio of branching fractions , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of at the SuperKEKB asymmetric-energy collider. Data is collected at the resonance, and one meson in the decay is fully reconstructed in hadronic decay modes. The accompanying signal meson is reconstructed as using leptonic decays. The normalization decay, , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024more » « less
- 
            We measure the branching fraction of the decay using data collected with the Belle II detector at the SuperKEKB collider. The data contain meson pairs produced in energy-asymmetric collisions at the resonance. The measured branching fraction , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025more » « less
- 
            We present a search for the baryon number and lepton number violating decays and produced from the process, using a data sample collected by the Belle II experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have equal to 2 and 0, respectively. Upper limits at 90% credibility level on the branching fractions of and are determined to be and , respectively. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    