Abstract Ni-based superalloys offer a unique combination of mechanical properties, corrosion resistance and high temperature performance. Near ambient pressure X-ray photoelectron spectroscopy was used to study in operando the initial steps of oxidation for Ni-5Cr, Ni-15Cr, Ni-30Cr and Ni-15Cr-6W at 500 °C, p(O 2 )=10 −6 mbar. The comparison of oxide evolution for these alloys quantifies the outsized impact of W in promoting chromia formation. For the binary alloys an increase in chromia due to Cr-surface enrichment is followed by NiO nucleation and growth thus seeding a dual-layer structure. The addition of W (Ni-15Cr-6W) shifts the reaction pathways towards chromia thus enhancing oxide quality. Density functional theory calculations confirm that W atoms adjacent to Cr create highly favorable oxygen adsorption sites. The addition of W supercharges the reactivity of Cr with oxygen essentially funneling oxygen atoms into Cr sites. The experimental results are discussed in the context of surface composition, chemistry, reactant fluxes, and microstructure.
more »
« less
Oxidation of NiCr and NiCrMo Alloys at Low Temperatures
Oxidation of Ni-Cr and Ni-Cr-Mo was studied in operando with near ambient pressure x-ray photoelectron spectroscopy in the Cabrera-Mott regime. The oxidation temperature was 200°C—a severely diffusion-limited regime. The near-surface alloy is Cr-enriched after the reduction of native oxide in vacuum, and especially so for Ni-15Cr-6Mo. Mo-cations are integrated into the oxide and Mo(VI) dominates at the surface. The surface chemistry-driven promotion of chromia by Mo predicted by theory is negated by the limited surface diffusion of reactants. Preoxidation processing is proposed to control the oxide properties for the use of Ni-Cr superalloys at low temperatures.
more »
« less
- Award ID(s):
- 2004326
- PAR ID:
- 10527136
- Publisher / Repository:
- Allen Press
- Date Published:
- Journal Name:
- Corrosion
- Volume:
- 79
- Issue:
- 11
- ISSN:
- 0010-9312
- Page Range / eLocation ID:
- 1287 to 1296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ni-Cr based super-alloys have exceptional corrosion resistance, which is further improved with Mo alloying. The correlation between passive layer performance and composition was studied to gain a deeper mechanistic understanding of the role of Mo by comparing the behavior of Ni-22Cr to Ni-22Cr-6Mo (wt%) alloys. The passive layers were formed using galvanostatic holds to create fast and slow growth conditions using high and low current densities. A potentiostatic hold was added to initiate exposure aging. The passive film was characterized using electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), atomic emission spectro-electrochemistry (AESEC), and X-ray photoelectron spectroscopy (XPS). Combined electrochemical and XPS characterization offered insight in cation concentrations and stratification, bonding states (oxide, hydroxide), and their modulation as a function of electrochemical conditions and performance. Most importantly: (i) Mo addition enhanced Cr(III) bound in oxide, (ii) fast growth conditions resulted in less corrosion resistant films, and (iii) exposure aging increased Cr-enrichment and reduced stratification of Mo-cations. The correlation between passive film performance and Cr, Ni, and Mo oxidation states, bonding, oxide-hydroxide contributions, and stratification is discussed. Generally accepted correlations, such as Cr-cation concentration and performance of the passive layer, have to be reexamined in order to account for the complex chemical make-up of the passive layer.more » « less
-
Electrochemical behavior of Ni alloys (Ni, β-NiAl, β-NiAl/Cr) was investigated in LiCl-KCl-Na2SO4 electrolyte at 700 °C under three gaseous atmospheres (Ar, O2, O2-0.1%SO2). In oxidizing atmospheres, Ni rapidly degraded due to instability of NiO, and alumina-rich scale on β-NiAl provided limited protection against hot corrosion (e.g., cracks in the scale under O2-0.1%SO2); however, the addition of both Al and Cr resulted in enhanced corrosion resistance by forming a mixed-oxide (Al2O3-Cr2O3) scale in oxidizing atmospheres. In hot corrosion processes of Ni alloys, the formation and stability of oxide scales in the molten salt were influenced by gaseous atmosphere and alloying elements.more » « less
-
Ti6Al4V has been recognized as an attractive material, due to its combination of low density and favorable mechanical properties. However, its insufficient oxidation resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser metal deposition (LMD). The microstructure and isothermal oxidation behaviors were investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher than that of the substrate. The oxidation testing at 700 °C and 800 °C suggested that the HEA coating has better oxidation resistance than the Ti6Al4V substrate. The oxide scales of the Ti6Al4V substrate were mainly composed of TiO2, while continuous Al2O3 and Cr2O3 were formed in the HEA coatings and could be attributed to oxidation resistance improvement. This work provides an approach to mitigate the oxidation resistance of Ti6Al4V and explore the applicability of the HEA in a high-temperature environment.more » « less
-
Abstract In headwater catchments, surface groundwater discharge areas have unique soil biogeochemistry and can be hot spots for solute contribution to streams. Across the northeastern United States, headwater hillslopes with surface groundwater discharge were enriched in soil Mn, including Watershed 3 of Hubbard Brook Experimental Forest, New Hampshire. Soils of this site were investigated along a grid to determine extent of Mn‐rich zone(s) and relationships to explanatory variables using ordinary kriging. The O and B horizons were analyzed for total secondary Mn and Fe, Cr oxidation potential, total organic C, moisture content, wetness ratio, and pH. Two Mn hot spots were found: a poorly drained, flowing spring (Location A); and a moderately well‐drained swale (Location B). Both had ∼6,000–9,000 mg Mn kg–1soil. However, Location A had high Cr oxidation potential (a measure of Mn reactivity), whereas Location B did not. Location C, a poorly drained seep with slow‐moving water, had lower Mn content and Cr oxidation potential. Manganese‐rich soil particles were analyzed using X‐ray absorption near‐edge structure and micro‐X‐ray diffraction; the dominant oxidation state was Mn(IV), and the dominant Mn oxide species was a layer‐type Mn oxide (L‐MnO2). We propose input of Mn(II) with groundwater, which is oxidized by soil microbes. Studies of catchment structure and response could benefit from identifying hot spots of trace metals, sourced mainly from parent material but which accumulate according to hydropedologic conditions. Small‐scale variation in Mn enrichment due to groundwater and microtopography appears to be more important than regional‐scale variation due to air pollution.more » « less
An official website of the United States government

