skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The H  i covering fraction of Lyman Limit Systems in FIRE haloes
ABSTRACT Atomic hydrogen (H i) serves a crucial role in connecting galactic-scale properties such as star formation with the large-scale structure of the Universe. While recent numerical simulations have successfully matched the observed covering fraction of H i near Lyman Break Galaxies (LBGs) and in the foreground of luminous quasars at redshifts $$z \lesssim 3$$, the low-mass end remains as-of-yet unexplored in observational and computational surveys. We employ a cosmological, hydrodynamical simulation (FIREbox) supplemented with zoom-in simulations (MassiveFIRE) from the Feedback In Realistic Environments (FIRE) project to investigate the H i covering fraction of Lyman Limit Systems ($$N_{{\text{H}}\, \rm{{\small I}}} \gtrsim 10^{17.2}$$ cm$$^{-2}$$) across a wide range of redshifts ($z=0-6$) and halo masses ($$10^8-10^{13} \, \,\mathrm{ M}_{\odot }$$ at $z=0$, $$10^8-10^{11}\, \,\mathrm{ M}_{\odot }$$ at $z=6$) in the absence of feedback from active galactic nuclei. We find that the covering fraction inside haloes exhibits a strong increase with redshift, with only a weak dependence on halo mass for higher mass haloes. For massive haloes ($$M_{\mathrm{vir}} \sim 10^{11}-10^{12} \,\mathrm{ M}_{\odot }$$), the radial profiles showcase scale-invariance and remain independent of mass. The radial dependence is well captured by a fitting function. The covering fractions in our simulations are in good agreement with measurements of the covering fraction in LBGs. Our comprehensive analysis unveils a complex dependence with redshift and halo mass for haloes with $$M_{\mathrm{vir}} \lesssim 10^{10} \,\mathrm{ M}_{\odot }$$ that future observations aim to constrain, providing key insights into the physics of structure formation and gas assembly.  more » « less
Award ID(s):
2307327 2108230
PAR ID:
10527205
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3847-3864
Size(s):
p. 3847-3864
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A fundamental requirement for reionizing the Universe is that a sufficient fraction of the ionizing photons emitted by galaxies successfully escapes into the intergalactic medium. However, due to the scarcity of high-redshift observational data, the sources driving reionization remain uncertain. In this work, we calculate the ionizing escape fractions (fesc) of reionization-era galaxies from the state-of-the-art thesan simulations, which combine an accurate radiation-hydrodynamic solver (arepo-rt) with the well-tested IllustrisTNG galaxy formation model to self-consistently simulate both small-scale galaxy physics and large-scale reionization throughout a large patch of the universe ($$L_\text{box} = 95.5\, \text{cMpc}$$). This allows the formation of numerous massive haloes ($$M_\text{halo} \gtrsim 10^{10}\, {\text{M}_{\odot }}$$), which are often statistically underrepresented in previous studies but are believed to be important to achieving rapid reionization. We find that low-mass galaxies ($$M_\text{stars} \lesssim 10^7\, {\text{M}_{\odot }}$$) are the main drivers of reionization above z ≳ 7, while high-mass galaxies ($$M_\text{stars} \gtrsim 10^8\, {\text{M}_{\odot }}$$) dominate the escaped ionizing photon budget at lower redshifts. We find a strong dependence of fesc on the effective star formation rate (SFR) surface density defined as the SFR per gas mass per escape area, i.e. $$\bar{\Sigma }_\text{SFR} = \text{SFR}/M_\text{gas}/R_{200}^2$$. The variation in halo escape fractions decreases for higher mass haloes, which can be understood from the more settled galactic structure, SFR stability, and fraction of sightlines within each halo significantly contributing to the escaped flux. Dust is capable of reducing the escape fractions of massive galaxies, but the impact on the global fesc depends on the dust model. Finally, active galactic nuclei are unimportant for reionization in thesan and their escape fractions are lower than stellar ones due to being located near the centres of galaxy gravitational potential wells. 
    more » « less
  2. ABSTRACT We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $$10^{10\!-\!14} \, \rm M_{\odot }$$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 $${\rm Mpc}\, h^{-1}$$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass $${\approx }2\times 10^{12} \, \rm M_{\odot }$$ are most spherical, with an average minor-to-major axial ratio of $$\langle s \rangle$$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $$10^{10} \, \rm M_{\odot }$$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions. 
    more » « less
  3. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of $${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $$\gtrsim {\dot{M}}_{\rm crit}$$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare $${\dot{M}}_{\rm crit}$$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that $${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$. 
    more » « less
  4. ABSTRACT We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at z = 0 with stellar masses $$10^{10.7}\, \mathrm{M}_{\odot } \leqslant M_{\ast } \leqslant 10^{11.9}\, \mathrm{M}_{\odot }$$, the total power-law slope has a mean of 〈γ′〉 = 2.011 ± 0.007 and a scatter of $$\sigma _{\gamma ^{\prime }} = 0.171$$ over the radial range 0.4–4 times the stellar half-mass radius. Several correlations between γ′ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction, and in situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, γ′ is almost constant with redshift below z = 2. Through analysing IllustrisTNG model variations, we show that black hole kinetic winds are crucial to lowering γ′ and matching observed galaxy correlations. The effects of stellar winds on γ′ are subdominant compared to active galactic nucleus (AGN) feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter haloes are well described by steeper than NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter-only (DMO) run. Their inner density slopes anticorrelate (remain constant) with the halo mass in the FP (DMO) run, and anticorrelate with the halo concentration parameter c200 in both the types of runs. The dark matter haloes of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons. 
    more » « less
  5. ABSTRACT We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($$M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$$), run to z = 0 with $$30\, \mathrm{M}_{\odot }$$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $$M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $$M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($$M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core $${\gt}200\rm \, pc$$, while lower mass UFDs exhibit cusps down to $${\lesssim}100\rm \, pc$$, as expected from energetic arguments. Our dwarfs with $$M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model). 
    more » « less