In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA) networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanoconfinement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents, for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyration. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such as kDNA. 
                        more » 
                        « less   
                    
                            
                            A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation
                        
                    
    
            Abstract We investigate solvent effects in the hydrodeoxygenation of 4-propylguaiacol (4PG, 166 amu), a key lignin-derived monomer, over Ru/C catalyst by combinedoperandosynchrotron photoelectron photoion coincidence (PEPICO) spectroscopy and molecular dynamics simulations. With and without isooctane co-feeding, ring-hydrogenated 2-methoxy-4-propylcyclohexanol (172 amu) is the first product, due to the favorable flat adsorption configuration of 4PG on the catalyst surface. In contrast, tetrahydrofuran (THF)—a polar aprotic solvent that is representative of those used for lignin solubilization and upgrading—strongly coordinates to the catalyst surface at the oxygen atom. This induces a local steric hindrance, blocking the flat adsorption of 4PG more effectively, as it needs more Ru sites than the tilted adsorption configuration revealed by molecular dynamics simulations. Therefore, THF suppresses benzene ring hydrogenation, favoring a demethoxylation route that yields 4-propylphenol (136 amu), followed by dehydroxylation to propylbenzene (120 amu). Solvent selection may provide new avenues for controlling catalytic selectivity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934887
- PAR ID:
- 10527216
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The interaction between bone morphogenetic protein-2 (BMP-2) and the surface of biomaterials is essential for the restoration of bone and cartilage tissue, inducing cellular differentiation and proliferation. The properties of the surface, including topology features, regulate the conformation and bioactivity of the protein. In this research, we investigated the influence of nanopatterned surfaces on the interaction of a homodimer BMP-2 with graphite material by combining molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. The graphite substrates were patterned as flat, linear grating, square, and circular profiles in combination with BMP-2 conformation in the side-on configuration. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. Results showed two optimal patterns that increased protein adsorption of the lower monomer while preserving the secondary structure and leaving the upper monomer free to interact with the cells. Charged residues arginine and lysine and polar residues histidine and tyrosine were the main residues responsible for the strong interaction with the graphite surface. This research provides new molecular-level insights to further understand the mechanisms underlying protein adsorption on nanoscale patterned substrates.more » « less
- 
            Ca-ion batteries (CIBs) have the potential to provide inexpensive energy storage, but their realization is impeded by the lack of suitable electrolytes. Motivated by recent experimental progress, we perform ab initio molecular dynamics simulations to investigate early decomposition reactions at the anode-electrolyte interface. By examining different combinations of solvent—tetrahydrofuran (THF) or ethylene carbonate (EC)—and salt—Ca(BH 4 ) 2 , Ca(BF 4 ) 2 , Ca(BCl 4 ) 2 , and Ca(ClO 4 ) 2 —we identify a variety of behavioral trends between electrolyte solutions. Next, we perform a separate trajectory with pure THF and gradually increased negative charge; despite an addition of -32 e , no THF decomposition is detected. Charge analysis reveals that in a reductive environment, THF distributes excess charge evenly across its hydrocarbon backbone, while EC concentrates charge on its ester oxygens and carbonyl carbon, resulting in decomposition. Graphs of charge vs. time for both solvents reveal that EC decomposition products can be reduced by up to five electrons, while those of THF are limited to a single electron. Ultimately, we find Ca(BH 4 ) 2 and THF to be the most stable solution investigated herein, corroborating experimental evidence of its suitability as a CIB electrolyte.more » « less
- 
            The catalytic properties of monometallic and bimetallic Ru and Mo phosphides were evaluated for their ability to selectively hydrogenate furfural to furfuryl alcohol. Monometallic MoP showed high selectivity (98%) towards furfuryl alcohol, while RuP and Ru 2 P exhibited lower selectivity at comparable conversion. Bimetallic promotional effects were observed with Ru 1.0 Mo 1.0 P, as the pseudo-first order reaction rate constant for furfural hydrogenation to furfuryl alcohol, k 1 , was at least 5× higher than MoP, RuP, and Ru 2 P, while maintaining a 99% selectivity. Composition-directed catalytic studies of Ru x Mo 2−x P (0.8 < x < 1.2) provided evidence that Ru rich compositions positively influence k 1 , but not the selectivity. The rate constant ratio k 1 /( k 2 + k 3 ) for furfuryl alcohol production compared to methyl furan ( k 2 ) and tetrahyrofurfuryl alcohol ( k 3 ) followed the trend of Ru 1.0 Mo 1.0 P > Ru 1.2 Mo 0.8 P > MoP > Ru 0.8 Mo 1.2 P > RuP > Ru 2 P. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to examine the configuration of adsorbed furfural on the synthesized catalysts, but the results were inconclusive and no correlation could be found with the selectivity due to the possible IR inactive surface modes with furfural adsorption. However, gas phase density functional theory calculations suggested the x = 1.0 material in Ru x Mo 2−x P (0.8 < x < 1.2) had the most favorable furfural adsorption energy. Experimentally, we also observed that the solvent greatly influenced both the conversion and selectivity, where isopropanol provided the highest selectivity to furfuryl alcohol. Finally, recycling experiments showed a 12% decrease in k 1 after 3 cycles without any regeneration, but the activity could be fully recovered through a re-reduction step.more » « less
- 
            This study investigates the adsorption mechanism of CO3^(2−) on the (111) surface of tricalcium silicate (C3S) using density functional theory simulations. Two distinct adsorption configurations were identified: a tilted alignment with localised bonding to Ca ions and concentrated charge transfer, and a parallel orientation with delocalised interactions involving multiple Ca ions. Charge density analysis revealed charge transfer from the surface to the carbonate molecule, with electron accumulation around oxygen atoms of CO3^(2−). Partial density of states analysis showed significant changes near the Fermi level after adsorption, indicating the formation of new bonding states. Molecular dynamics simulations demonstrated that the tilted configuration stabilises the surface by reducing Ca ion mobility, while the parallel configuration leads to increased ion mobility and higher surface reactivity. These findings emphasise the importance of site-specific interactions and electronic structure changes in understanding CO2 mineralisation mechanisms in cementitious materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
