skip to main content


Title: Direct synthesis of furfuryl alcohol from furfural: catalytic performance of monometallic and bimetallic Mo and Ru phosphides
The catalytic properties of monometallic and bimetallic Ru and Mo phosphides were evaluated for their ability to selectively hydrogenate furfural to furfuryl alcohol. Monometallic MoP showed high selectivity (98%) towards furfuryl alcohol, while RuP and Ru 2 P exhibited lower selectivity at comparable conversion. Bimetallic promotional effects were observed with Ru 1.0 Mo 1.0 P, as the pseudo-first order reaction rate constant for furfural hydrogenation to furfuryl alcohol, k 1 , was at least 5× higher than MoP, RuP, and Ru 2 P, while maintaining a 99% selectivity. Composition-directed catalytic studies of Ru x Mo 2−x P (0.8 < x < 1.2) provided evidence that Ru rich compositions positively influence k 1 , but not the selectivity. The rate constant ratio k 1 /( k 2 + k 3 ) for furfuryl alcohol production compared to methyl furan ( k 2 ) and tetrahyrofurfuryl alcohol ( k 3 ) followed the trend of Ru 1.0 Mo 1.0 P > Ru 1.2 Mo 0.8 P > MoP > Ru 0.8 Mo 1.2 P > RuP > Ru 2 P. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to examine the configuration of adsorbed furfural on the synthesized catalysts, but the results were inconclusive and no correlation could be found with the selectivity due to the possible IR inactive surface modes with furfural adsorption. However, gas phase density functional theory calculations suggested the x = 1.0 material in Ru x Mo 2−x P (0.8 < x < 1.2) had the most favorable furfural adsorption energy. Experimentally, we also observed that the solvent greatly influenced both the conversion and selectivity, where isopropanol provided the highest selectivity to furfuryl alcohol. Finally, recycling experiments showed a 12% decrease in k 1 after 3 cycles without any regeneration, but the activity could be fully recovered through a re-reduction step.  more » « less
Award ID(s):
1752036
NSF-PAR ID:
10159476
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
9
Issue:
14
ISSN:
2044-4753
Page Range / eLocation ID:
3656 to 3668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Pt through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites. 
    more » « less
  3. null (Ed.)
    Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon–carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SA BET = 350 m 2 g −1 ) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO 2 catalyst. A low CuPd/SiO 2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO 2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd 0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO 2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h −1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications. 
    more » « less
  4. In an epoch dominated by escalating concerns over climate change and looming energy crises, the imperative to design highly efficient catalysts that can facilitate the sequestration and transformation of carbon dioxide (CO2) into beneficial chemicals is paramount. This research presents the successful synthesis of nanofiber catalysts, incorporating monometallic nickel (Ni) and cobalt (Co) and their bimetallic blend, NiCo, via a facile electrospinning technique, with precise control over the Ni/Co molar ratios. Application of an array of advanced analytical methods, including SEM, TGA–DSC, FTIR-ATR, XRD, Raman, XRF, and ICP-MS, validated the effective integration and homogeneous distribution of active Ni/Co catalysts within the nanofibers. The catalytic performance of these mono- and bimetallic Ni/Co nanofiber catalysts was systematically examined under ambient pressure conditions for CO2 hydrogenation reactions. The bimetallic NiCo nanofiber catalysts, specifically with a Ni/Co molar ratio of 1:2, and thermally treated at 1050 °C, demonstrated a high CO selectivity (98.5%) and a marked increase in CO2 conversion rate—up to 16.7 times that of monometallic Ni nanofiber catalyst and 10.8 times that of the monometallic Co nanofiber catalyst. This significant enhancement in catalytic performance is attributed to the improved accessibility of active sites, minimized particle size, and the strong Ni–Co–C interactions within these nanofiber structures. These nanofiber catalysts offer a unique model system that illuminates the fundamental aspects of supported catalysis and accentuates its crucial role in addressing pressing environmental challenges. 
    more » « less
  5. Abstract

    The introduction of a foreign metal atom in the coordination environment of single‐atom catalysts constitutes an exciting frontier of active‐site engineering, generating bimetallic low‐nuclearity catalysts often exhibiting unique catalytic synergies. To date, the exploration of their full scope is thwarted by (i) the lack of synthetic techniques with control over intermetallic coordination, and (ii) the challenging characterization of these materials. Herein, carbon‐host functionalization is presented as a strategy to selectively generate Au‐Ru dimers and isolated sites by simple incipient wetness impregnation, as corroborated by careful X‐ray absorption spectroscopy analysis. The distinct catalytic fingerprints are unveiled via the hydrogen evolution reaction, employed as a probe for proton adsorption properties. Intriguingly, the virtually inactive Au atoms enhance the reaction kinetics of their Ru counterparts already when spatially isolated, by shifting the proton adsorption free energy closer to neutrality. Remarkably, the effect is magnified by a factor of 2 in dimers. These results exemplify the relevance of controlling intermetallic coordination for the rational design of bimetallic low‐nuclearity catalysts.

     
    more » « less