skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechano‐Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics
Abstract Thromboembolic diseases are a significant cause of mortality and are clinically treated enzymatically with tissue plasminogen activator (tPA). Interestingly, prior studies in fibrin fibers and fibrin gels have demonstrated that thrombolysis may be mechanically sensitive. This study aims to expand mechano‐lytic studies to whole blood clots. Furthermore, this study investigates not only how mechanics impacts lysis but also how lysis impacts mechanics. Therefore, clots made from whole human blood are exposed to tPA while the clots are either stretched or unstretched. After, the resulting degree of clot lysis is measured by weighing the clots and by measuring the concentration of D‐dimer in the surrounding bath. Additionally, each clot's mechanical properties are measured. This study finds that mechanical stretch accelerates loss in clot weight but does not impact the lysis rate as measured by D‐dimer. Moreover, lysis not only removes clot volume but also reduces the remaining clot's stiffness and toughness. In summary, tPA‐induced lysis of whole clot appears mechanically insensitive, but stretch reduces clot weight. Furthermore, results show that thrombolysis weakens clot. This suggests that thrombolysis may increase the risk of secondary embolizations but may also ease clot removal during thrombectomy, for example.  more » « less
Award ID(s):
2046148 2105175
PAR ID:
10600170
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
14
Issue:
9
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hagemeyer, Christoph E (Ed.)
    The search persists for a safe and effective agent to lyse arterial thrombi in the event of acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are composed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin, depending on the mechanism of formation. Current thrombolytics were designed to target red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial thrombi. We have developed an in vitro system to study the efficacy of known and proposed thrombolytic agents on white clots formed from whole blood in a stenosis with arterial conditions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine, and N,N’-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombolytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5 min, which ranged up to 30 min at lower concentrations, and resulted in an average reduction in surface area of 71 ± 20%. The clot burden was significantly reduced compared to both tPA and a saline control ( p <0.0001). We also tested the efficacy of all agents on red fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA significantly lysed red clot over 48 h ( p <0.01). These results lead to a novel use for DiNAC as a possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of hyper-fibrinolytic bleeding. 
    more » « less
  2. Fibrin is the fibrous protein network that comprises blood clots; it is uniquely capable of bearing very large tensile strains (up to 200%) due to multiscale force accommodation mechanisms. Fibrin is also a biochemical scaffold for numerous enzymes and blood factors. The biomechanics and biochemistry of fibrin have been independently studied. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry? In this study, we show that mechanically induced protein structural changes in fibrin affect fibrin biochemistry. We find that tensile deformation of fibrin leads to molecular structural transitions of α-helices to β-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrin lysis. Moreover, binding of tPA and Thioflavin T, a commonly used β-sheet marker, were mutually exclusive, further demonstrating the mechano-chemical control of fibrin biochemistry. Finally, we demonstrate that structural changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to reduced α IIb β 3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and biological activity in an elegant mechano-chemical feedback loop, which possibly extends to other fibrous biopolymers. 
    more » « less
  3. Abstract Studying and quantifying the mechanics of blood clots is essential to better diagnosis and prognosis of, as well as therapy for, thromboembolic pathologies such as strokes, heart attacks, and pulmonary embolisms. Unfortunately, mechanically testing blood clots is complicated by their softness and fragility, thus making the use of classic mounting techniques, such as clamping, challenging. This is particularly true for mechanical testing under large deformation. Here, we describe protocols for creating in vitro blood clots and securely mounting these samples on mechanical test equipment. To this end, we line 3D‐printed molds with a hook‐and‐loop fabric that, after coagulation, provides a secure interface between the sample and device mount. In summary, our molding and mounting protocols are ideal for performing large‐deformation mechanical testing, with samples that can withstand substantial deformation without delaminating from the apparatus. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Cube‐shaped blood clot preparation Basic Protocol 2: Sheet‐shaped blood clot preparation 
    more » « less
  4. Thromboembolism – that is, clot formation and the subsequent fragmentation of clot – is a leading cause of death worldwide. Clots’ mechanical properties are critical determinants of both the embolization process and the pathophysiological consequences thereof. Thus, understanding and quantifying the mechanical properties of clots is important to our ability to treat and prevent thromboembolic disease. However, assessing these properties from in vivo clots is experimentally challenging. Therefore, we and others have turned to studying in vitro clot mimics instead. Unfortunately, there are significant discrepancies in the reported properties of these clot mimics, which have been hypothesized to arise from differences in experimental techniques and blood sources. The goal of our current work is therefore to compare the mechanical behavior of clots made from the two most common sources, human and bovine blood, using the same experimental techniques. To this end, we tested clots under pure shear with and without initial cracks, under cyclic loading, and under stress relaxation. Based on these data, we computed and compared stiffness, strength, work-to-rupture, fracture toughness, relaxation time constants, and prestrain. While clots from both sources behaved qualitatively similarly, they differed quantitatively in almost every metric. We also correlated each mechanical metric to measures of blood composition. Thereby, we traced this inter-species variability in clot mechanics back to significant differences in hematocrit, but not platelet count. Thus, our work suggests that the results of past studies that have used bovine blood to make in vitro mimics – without adjusting blood composition – should be interpreted carefully. Future studies about the mechanical properties of blood clots should focus on human blood alone. 
    more » « less
  5. When a thrombus breaks off and embolizes it can occlude vital vessels such as those of the heart, lung, or brain. These thromboembolic conditions are responsible for 1 in 4 deaths worldwide. Thrombus resistance to embolization is driven by its intrinsic fracture toughness as well as other, non-surface-creating dissipative mechanisms. In our current work, we identify and quantify these latter mechanisms toward future studies that aim to delineate fracture from other forms of dissipation. To this end, we use an in vitro thrombus mimic system to produce whole blood clots and explore their dissipative mechanics under simple uniaxial extension, cyclic loading, and stress-relaxation. We found that whole blood clots exhibit Mullins-like effect, hysteresis, permanent set, strain-rate dependence, and nonlinear stress-relaxation. Interestingly, we found that performing these tests under dry or submerged conditions did not change our results. However, performing these tests under room temperature or body temperature conditions yielded differences. Importantly, because we use venous blood our work is most closely related to venous in vivo blood clots. Overall, we have demonstrated that whole blood clots show several dissipative phenomena – similarly to hydrogels – that will be critical to our understanding of thrombus embolization. 
    more » « less