Using Landfill Gas Condensate as a Carbon Source for Landfill Leachate Denitrification
- Award ID(s):
- 2101053
- PAR ID:
- 10527316
- Publisher / Repository:
- Global Waste Management Symposium 2024
- Date Published:
- Format(s):
- Medium: X
- Location:
- Indian Wells, California, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Role of landfill cover materials in mitigating GHG emissions in biogeochemical landfill cover systemMunicipal solid waste (MSW) landfills are known to be one of the major sources of greenhouse gas (GHG) emissions into the atmosphere. In order to alleviate these emissions, an innovative biogeochemical cover system is proposed to mitigate both methane (CH4) and carbon dioxide (CO2) emissions, which are the predominant gases in landfill gas (LFG) emissions. This paper investigates four materials: soil, non-activated biochar, methanotrophic activated biochar, and basic oxygen furnace (BOF) slag for their CH4 and CO2 uptake capacity. First, the physical and chemical properties of the four materials were tested. Thereafter, several series of batch tests were conducted to determine CH4 and CO2 uptake by each material. The results demonstrate that the soil has the potential to oxidize CH4 into CO2 due to presence of CH4 oxidizing (methanotrophic) bacteria, while the BOF steel slag has potential to sequester CO2. The methanotrophic activated biochar showed enhanced biological activity due to high methanotrophic population, mitigating CH4 efficiently. However, the non-activated biochar had little to no effect on the uptake of either CH4 or CO2. Finally, the combination of these cover materials at different proportions in different configurations is being investigated to optimize the biogeochemical cover system to mitigate both CH4 and CO2 emissions.more » « less
-
Landfills for disposing of solid waste are designed, located, managed, and monitored facilities expected to comply with government regulations to prevent contamination of the surrounding environment. After the average life expectancy of a typical landfill (30 to 50 years), a large investment in the construction, operation, final closure, and 30-year monitoring of a new site is needed. In this case study, we provide a holistic explanation of the unexpected development of elevated temperature landfills (ETLFs), such as that in the city of Bristol (United States) on the border of the states of Virginia and Tennessee, including the initial role played by coal ash. Despite the increasing frequency of ETLF occurrence, there is limited knowledge available about their associated environmental problems. The study uses mixed (qualitative, quantitative, and mapping) methods to analyze (1) the levels of odoriferous reduced sulfur compounds, ammonia, and volatile organic compounds (VOCs) emitted, (2) the ratio of methane to carbon dioxide concentrations in five locations, which dropped from unity (normal landfill) to 0.565, (3) the location of gas well heads with gradients of elevated temperatures, and (4) the correlation of the filling rate (upward of ~12 m y−1) with depth for registered events depositing coal ash waste. The work identifies spatial patterns that support the conclusion that coal ash served as the initiator for an ETLF creation. The case of the city of Bristol constitutes an example of ETLFs with elevated temperatures above the regulatory United States Environmental Protection Agency (EPA) upper threshold (65 °C), having alongside low methane emissions, large production of leachate, land subsidence, and a large production of organic compounds. Such landfills suffer abnormal chemical reactions within the waste mass that reduce the life expectancy of the site. Residents in such communities suffer intolerable odors from fugitive emissions and poor air quality becomes prominent, affecting the well-being and economy of surrounding populations. Conclusive information available indicates that the Bristol landfill has been producing large amounts of leachate and hazardous gases under the high pressures and temperatures developed within the landfill. A lesson learned, which should be used to prevent this problem in the future, is that the early addition of coal ash into the landfill would have catalyzed the process of ETLF creation. The work considers the public health risks and socioeconomic problems of residents exposed to emissions from an ETLF and discusses the efforts needed to prevent further incidents in other locations.more » « less
An official website of the United States government

