skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Looking under the lamp-post: quantifying the performance of contact tracing in the United States during the SARS-CoV-2 pandemic
Abstract Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 in the United States”? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.  more » « less
Award ID(s):
2200052
PAR ID:
10527402
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
BMC Public Health
Volume:
24
Issue:
1
ISSN:
1471-2458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective: Current guidance states that asymptomatic screening for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) prior to admission to an acute-care setting is at the facility’s discretion. This study’s objective was to estimate the number of undetected cases of SARS-CoV-2 admitted as inpatients under 4 testing approaches and varying assumptions. Design and setting: Individual-based microsimulation of 104 North Carolina acute-care hospitals Patients: All simulated inpatient admissions to acute-care hospitals from December 15, 2021, to January 13, 2022 [ie, during the SARS-COV-2 ο (omicron) variant surge]. Interventions: We simulated (1) only testing symptomatic patients, (2) 1-stage antigen testing with no confirmatory polymerase chain reaction (PCR) test, (3) 1-stage antigen testing with a confirmatory PCR for negative results, and (4) serial antigen screening (ie, repeat antigen test 2 days after a negative result). Results: Over 1 month, there were 77,980 admissions: 13.7% for COVID-19, 4.3% with but not for COVID-19, and 82.0% for non–COVID-19 indications without current infection. Without asymptomatic screening, 1,089 (credible interval [CI], 946–1,253) total SARS-CoV-2 infections (7.72%) went undetected. With 1-stage antigen screening, 734 (CI, 638–845) asymptomatic infections (67.4%) were detected, with 1,277 false positives. With combined antigen and PCR screening, 1,007 (CI, 875–1,159) asymptomatic infections (92.5%) were detected, with 5,578 false positives. A serial antigen testing policy detected 973 (CI, 845–1,120) asymptomatic infections (89.4%), with 2,529 false positives. Conclusions: Serial antigen testing identified >85% of asymptomatic infections and resulted in fewer false positives with less cost per identified infection compared to combined antigen plus PCR testing. 
    more » « less
  2. null (Ed.)
    Kanagawa and Hokkaido were affected by COVID-19 in the early stage of the pandemic. Japan’s initial response included contact tracing and PCR analysis on anyone who was suspected of having been exposed to SARS-CoV-2. In this retrospective study, we analyzed publicly available COVID-19 registry data from Kanagawa and Hokkaido (n = 4392). Exponential random graph model (ERGM) network analysis was performed to examine demographic and symptomological homophilies. Age, symptomatic, and asymptomatic status homophilies were seen in both prefectures. Symptom homophilies suggest that nuanced genetic differences in the virus may affect its epithelial cell type range and can result in the diversity of symptoms seen in individuals infected by SARS-CoV-2. Environmental variables such as temperature and humidity may also play a role in the overall pathogenesis of the virus. A higher level of asymptomatic transmission was observed in Kanagawa. Moreover, patients who contracted the virus through secondary or tertiary contacts were shown to be asymptomatic more frequently than those who contracted it from primary cases. Additionally, most of the transmissions stopped at the primary and secondary levels. As expected, significant viral transmission was seen in healthcare settings. 
    more » « less
  3. Eksin, Ceyhun (Ed.)
    We simulated epidemic projections of a potential COVID-19 outbreak in a residential university population in the United States under varying combinations of asymptomatic tests (5% to 33% per day), transmission rates (2.5% to 14%), and contact rates (1 to 25), to identify the contact rate threshold that, if exceeded, would lead to exponential growth in infections. Using this, we extracted contact rate thresholds among non-essential workers, population size thresholds in the absence of vaccines, and vaccine coverage thresholds. We further stream-lined our analyses to transmission rates of 5 to 8%, to correspond to the reported levels of face-mask-use/physical-distancing during the 2020 pandemic. Our results suggest that, in the absence of vaccines, testing alone without reducing population size would not be sufficient to control an outbreak. If the population size is lowered to 34% (or 44%) of the actual population size to maintain contact rates at 4 (or 7) among non-essential workers, mass tests at 25% (or 33%) per day would help control an outbreak. With the availability of vaccines, the campus can be kept at full population provided at least 95% are vaccinated. If vaccines are partially available such that the coverage is lower than 95%, keeping at full population would require asymptomatic testing, either mass tests at 25% per day if vaccine coverage is at 63–79%, or mass tests at 33% per day if vaccine coverage is at 53–68%. If vaccine coverage is below 53%, to control an outbreak, in addition to mass tests at 33% per day, it would also require lowering the population size to 90%, 75%, and 60%, if vaccine coverage is at 38–53%, 23–38%, and below 23%, respectively. Threshold estimates from this study, interpolated over the range of transmission rates, can collectively help inform campus level preparedness plans for adoption of face mask/physical-distancing, testing, remote instructions, and personnel scheduling, during non-availability or partial-availability of vaccines, in the event of SARS-Cov2-type disease outbreaks. 
    more » « less
  4. Abstract Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest in using wastewater monitoring as an approach for disease surveillance. A significant uncertainty that would improve the interpretation of wastewater monitoring data is the intensity and timing with which individuals shed RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data sets from a university campus during a period of heightened surveillance, we inferred that individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty interval (UI): 6–7; 95% UI: 4–8) following infection, and that wastewater measurements are highly overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32–0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as an early warning of rising transmission in areas where transmission is low or clinical testing is delayed or of limited capacity. 
    more » « less
  5. Rapid and accurate detection of the pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for COVID-19, is critical for mitigating the COVID-19 pandemic. Current state-of-the-art pathogen tests for COVID-19 diagnosis are done in a liquid medium and take 10–30 min for rapid antigen tests and hours to days for polymerase chain reaction (PCR) tests. Herein we report novel accurate pathogen sensors, a new test method, and machine-learning algorithms for a breathalyzer platform for fast detection of SARS-CoV-2 virion particles in the aerosol in 30 s. The pathogen sensors are based on a functionalized molecularly-imprinted polymer, with the template molecules being the receptor binding domain spike proteins for different variants of SARS-CoV-2. Sensors are tested in the air and exposed for 10 s to the aerosols of various types of pathogens, including wild-type, D614G, alpha, delta, and omicron variant SARS-CoV-2, BSA (Bovine serum albumin), Middle East respiratory syndrome–related coronavirus (MERS-CoV), influenza, and wastewater samples from local sewage. Our low-cost, fast-responsive pathogen sensors yield accuracy above 99% with a limit-of-detection (LOD) better than 1 copy/μL for detecting the SARS-CoV-2 virus from the aerosol. The machine-learning algorithm supporting these sensors can accurately detect the pathogens, thereby enabling a new and unique breathalyzer platform for rapid COVID-19 tests with unprecedented speeds. 
    more » « less