skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Draft genome of Chloroflexus sp. MS-CIW-1, of the Chloroflexus sp. MS-G group from Mushroom Spring, Yellowstone National Park
Chloroflexus sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.8 Mb consisting of 6 contigs with 3755 protein-coding genes and a GC content of 54.45%.  more » « less
Award ID(s):
1921429 2125965
PAR ID:
10527495
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Maresca, Julia A
Publisher / Repository:
Microbiology Resource Announcements
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
13
Issue:
3
ISSN:
2576-098X
Subject(s) / Keyword(s):
Chloroflexus, phototrophic mat, chloroflexota, hot spring, anoxygenic phototroph, phototrophs, genomes, Mushroom Spring
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Klepac-Ceraj, Vanja (Ed.)
    ABSTRACT Desulfomicrobium sp. strain ZS1 is an obligate anaerobic, sulfate-reducing member of the Desulfobacterota from Zodletone Spring, an anoxic sulfide-rich spring in southwestern Oklahoma. Its complete genome was sequenced using a combination of Illumina and Oxford Nanopore platforms and encodes 3,364 proteins and 81 RNAs on a single chromosome. 
    more » « less
  2. Maresca, Julia A. (Ed.)
    ABSTRACT We report the 3.5-Mb draft genome sequence of the cyanobacterium Synechococcus sp. strain Nb3U1, which was isolated from a microbial mat sample collected from Nakabusa Hot Spring, Nagano, Japan. 
    more » « less
  3. Road dust particles including nanoparticles (NPs), with heterogeneous composition, are significant carriers of metals/metalloids and can be further transported into the atmosphere or surface runoff. However, their elemental composition remains poorly defined. In this study, seven road dust samples were collected from different areas in Shanghai, China and were analyzed for total metal concentrations, particle elemental composition and ratios, morphology, composition, and crystalline phases. Overall, the road dust particles were characterized by high concentrations of Fe, Ti, Al, Cr, Ci, V Ni, Cu, Zn, Sn, and Sb, which varied among the samples. Four potential sources of metals were identified using PCA analysis including natural sources, exhaust and non-exhaust emissions, and vehicle electronics. The bulk elemental ratios of Ti/Nb, Ti/Al, Ti/Fe, Pb/Nb, Sn/Nb and W/Nb in the road dust samples were higher than the corresponding reference ratios indicating that the road dust was contaminated with Ti, Pb, Sn, and W. Anthropogenic Ti, Pb, Sn and W were estimated by mass balance calculation and varied between 0.25 and 1.48 × 10 6 μg kg −1 , 0.19 and 1.21 × 10 5 μg kg −1 , 0.98 and 4.22 × 10 4 μg kg −1 , and 0.12 and 1.01 × 10 4 μg kg −1 , respectively. The number concentration of NPs was determined by SP-ICP-TOF-MS and was 0.66–3.3 × 10 10 particles per g for Ti-containing NPs, 0.23–1.51 × 10 10 particles per g for Pb-containing NPs, 0.28–3.10 × 10 9 particles per g for Sn-containing NPs, and 1.34–9.38 × 10 8 particles per g for W-containing NPs, respectively. TEM analysis further confirmed the occurrence of both natural and anthropogenic Ti- and W-containing NPs and the contamination of Pb- and Sn-containing NPs in Shanghai road dust. These NPs could originate from the non-exhaust emission of vehicles and coal combustion. Overall, this study provides a reliable comprehensive approach for the characterization of road dust particles and new insights into the nature of Ti-, Pb-, Sn-, and W-containing particles in dust samples. 
    more » « less
  4. null (Ed.)